model_cards for Chinese Couplet and Poem GPT2 models (#8620)

This commit is contained in:
hhou435 2020-11-19 02:06:30 +08:00 committed by GitHub
parent a0c62d2493
commit e7f77fc52a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 170 additions and 0 deletions

View File

@ -0,0 +1,85 @@
---
language: zh
widget:
- text: "[CLS]国 色 天 香 姹 紫 嫣 红 碧 水 青 云 欣 共 赏 -"
---
# Chinese Couplet GPT2 Model
## Model description
The model is used to generate Chinese couplets. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-couplet][couplet].
Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, and the output results may not be neat.
## How to use
You can use the model directly with a pipeline for text generation:
When the parameter skip_special_tokens is True:
```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> from transformers import TextGenerationPipeline,
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True)
[{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 从 天 外 来 阅 旗'}]
```
When the parameter skip_special_tokens is False:
```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> from transformers import TextGenerationPipeline,
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True)
[{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 我 酒 不 辞 [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP]'}]
```
## Training data
Contains 700,000 Chinese couplets collected by [couplet-clean-dataset](https://github.com/v-zich/couplet-clean-dataset).
## Training procedure
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 25,000 steps with a sequence length of 64.
```
python3 preprocess.py --corpus_path corpora/couplet.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path couplet.pt --processes_num 16 \
--seq_length 64 --target lm
```
```
python3 pretrain.py --dataset_path couplet.pt \
--vocab_path models/google_zh_vocab.txt \
--output_model_path models/couplet_gpt_base_model.bin \
--config_path models/bert_base_config.json --learning_rate 5e-4 \
--tie_weight --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--batch_size 64 --report_steps 1000 \
--save_checkpoint_steps 5000 --total_steps 25000 \
--embedding gpt --encoder gpt2 --target lm
```
### BibTeX entry and citation info
```
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
```
[couplet]: https://huggingface.co/uer/gpt2-chinese-couplet

View File

@ -0,0 +1,85 @@
---
language: zh
widget:
- text: "[CLS] 万 叠 春 山 积 雨 晴 "
- text: "[CLS] 青 山 削 芙 蓉 "
---
# Chinese Poem GPT2 Model
## Model description
The model is used to generate Chinese ancient poems. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-poem][poem].
Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, and the output results may not be neat.
## How to use
You can use the model directly with a pipeline for text generation:
When the parameter skip_special_tokens is True:
```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> from transformers import TextGenerationPipeline,
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("[CLS]梅 山 如 积 翠 ", max_length=50, do_sample=True)
[{'generated_text': '[CLS]梅 山 如 积 翠 的 手 堪 捧 。 遥 遥 仙 人 尉 盘 盘 故 时 陇 。 丹 泉 清 可 鉴 石 乳 甘 于 。 行 将 解 尘 缨 于 焉 蹈 高 踵 。 我'}]
```
When the parameter skip_special_tokens is False:
```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> from transformers import TextGenerationPipeline,
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("[CLS]梅 山 如 积 翠 ", max_length=50, do_sample=True)
[{'generated_text': '[CLS]梅 山 如 积 翠 的 [UNK] 手 堪 捧 。 遥 遥 仙 人 尉 盘 盘 故 时 陇 。 丹 泉 清 可 鉴 石 乳 甘 可 捧 。 银 汉 迟 不 来 槎 头 欲 谁 揽 。 何'}]
```
## Training data
Contains 800,000 Chinese ancient poems collected by [chinese-poetry](https://github.com/chinese-poetry/chinese-poetry) and [Poetry](https://github.com/Werneror/Poetry) projects.
## Training procedure
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 200,000 steps with a sequence length of 128.
```
python3 preprocess.py --corpus_path corpora/poem.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path poem.pt --processes_num 16 \
--seq_length 128 --target lm
```
```
python3 pretrain.py --dataset_path poem.pt \
--vocab_path models/google_zh_vocab.txt \
--output_model_path models/poem_gpt_base_model.bin \
--config_path models/bert_base_config.json --learning_rate 5e-4 \
--tie_weight --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--batch_size 64 --report_steps 1000 \
--save_checkpoint_steps 50000 --total_steps 200000 \
--embedding gpt --encoder gpt2 --target lm
```
### BibTeX entry and citation info
```
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
```
[poem]: https://huggingface.co/uer/gpt2-chinese-poem