Add Blip and Blip2 for pipeline tests (#21904)

* fix

* add to tests

* style and quality

* add missing

---------

Co-authored-by: NielsRogge <NielsRogge@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
Yih-Dar 2023-03-02 18:20:34 +01:00 committed by GitHub
parent 1325459105
commit e6de918676
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 66 additions and 7 deletions

View File

@ -496,6 +496,8 @@ MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("blip", "BlipForConditionalGeneration"),
("blip-2", "Blip2ForConditionalGeneration"),
("vision-encoder-decoder", "VisionEncoderDecoderModel"),
]
)

View File

@ -394,7 +394,11 @@ class BlipModelTester:
@require_torch
class BlipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (BlipModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": BlipModel} if is_torch_available() else {}
pipeline_model_mapping = (
{"feature-extraction": BlipModel, "image-to-text": BlipForConditionalGeneration}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False

View File

@ -34,6 +34,7 @@ from ...test_modeling_common import (
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
@ -584,7 +585,7 @@ class Blip2TextModelTester:
# this model tester uses an encoder-decoder language model (T5)
class Blip2ForConditionalGenerationModelTester:
class Blip2ModelTester:
def __init__(
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
):
@ -664,8 +665,13 @@ class Blip2ForConditionalGenerationModelTester:
@require_torch
class Blip2ModelTest(ModelTesterMixin, unittest.TestCase):
class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForConditionalGeneration, Blip2Model) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": Blip2Model, "image-to-text": Blip2ForConditionalGeneration}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
@ -674,7 +680,7 @@ class Blip2ModelTest(ModelTesterMixin, unittest.TestCase):
test_torchscript = False
def setUp(self):
self.model_tester = Blip2ForConditionalGenerationModelTester(self)
self.model_tester = Blip2ModelTester(self)
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()

View File

@ -55,6 +55,42 @@
],
"processor_classes": []
},
"BlipModel": {
"tokenizer_classes": [
"BertTokenizerFast",
"BertTokenizer"
],
"processor_classes": [
"BlipImageProcessor"
]
},
"BlipForConditionalGeneration": {
"tokenizer_classes": [
"BertTokenizerFast",
"BertTokenizer"
],
"processor_classes": [
"BlipImageProcessor"
]
},
"Blip2Model": {
"tokenizer_classes": [
"GPT2TokenizerFast",
"GPT2Tokenizer"
],
"processor_classes": [
"BlipImageProcessor"
]
},
"Blip2ForConditionalGeneration": {
"tokenizer_classes": [
"GPT2TokenizerFast",
"GPT2Tokenizer"
],
"processor_classes": [
"BlipImageProcessor"
]
},
"BloomModel": {
"tokenizer_classes": [
"BloomTokenizerFast"

View File

@ -410,7 +410,10 @@ def convert_processors(processors, tiny_config, output_folder, result):
elif isinstance(processor, ProcessorMixin):
# Currently, we only have these 2 possibilities
tokenizers.append(processor.tokenizer)
feature_extractors.append(processor.feature_extractor)
if hasattr(processor, "image_processor"):
feature_extractors.append(processor.image_processor)
elif hasattr(processor, "feature_extractor"):
feature_extractors.append(processor.feature_extractor)
# check the built processors have the unique type
num_types = len({x.__class__.__name__ for x in feature_extractors})
@ -557,7 +560,7 @@ def upload_model(model_dir, organization):
repo_exist = False
error = None
try:
create_repo(repo_id=repo_name, organization=organization, exist_ok=False, repo_type="model")
create_repo(repo_id=f"{organization}/{repo_name}", exist_ok=False, repo_type="model")
except Exception as e:
error = e
if "You already created" in str(e):
@ -778,7 +781,15 @@ def get_config_overrides(config_class, processors):
model_tester_kwargs = {"vocab_size": vocab_size}
# CLIP-like models have `text_model_tester` and `vision_model_tester`, and we need to pass `vocab_size` to
# `text_model_tester` via `text_kwargs`. The same trick is also necessary for `Flava`.
if config_class.__name__ in ["CLIPConfig", "GroupViTConfig", "OwlViTConfig", "XCLIPConfig", "FlavaConfig"]:
if config_class.__name__ in [
"CLIPConfig",
"GroupViTConfig",
"OwlViTConfig",
"XCLIPConfig",
"FlavaConfig",
"BlipConfig",
"Blip2Config",
]:
del model_tester_kwargs["vocab_size"]
model_tester_kwargs["text_kwargs"] = {"vocab_size": vocab_size}
# `FSMTModelTester` accepts `src_vocab_size` and `tgt_vocab_size` but not `vocab_size`.