mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Merge branch 'master' of https://github.com/ananyahjha93/pytorch-pretrained-BERT
pull current master to local
This commit is contained in:
commit
e5b63fb542
@ -857,7 +857,6 @@ def main():
|
||||
optimizer.zero_grad()
|
||||
global_step += 1
|
||||
|
||||
if args.do_train:
|
||||
# Save a trained model and the associated configuration
|
||||
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
||||
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
|
||||
|
@ -471,7 +471,7 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
|
||||
prelim_predictions = []
|
||||
# keep track of the minimum score of null start+end of position 0
|
||||
score_null = 1000000 # large and positive
|
||||
min_null_feature_index = 0 # the paragraph slice with min mull score
|
||||
min_null_feature_index = 0 # the paragraph slice with min null score
|
||||
null_start_logit = 0 # the start logit at the slice with min null score
|
||||
null_end_logit = 0 # the end logit at the slice with min null score
|
||||
for (feature_index, feature) in enumerate(features):
|
||||
@ -620,7 +620,7 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
|
||||
all_predictions[example.qas_id] = ""
|
||||
else:
|
||||
all_predictions[example.qas_id] = best_non_null_entry.text
|
||||
all_nbest_json[example.qas_id] = nbest_json
|
||||
all_nbest_json[example.qas_id] = nbest_json
|
||||
|
||||
with open(output_prediction_file, "w") as writer:
|
||||
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
||||
@ -657,8 +657,8 @@ def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
|
||||
#
|
||||
# What we really want to return is "Steve Smith".
|
||||
#
|
||||
# Therefore, we have to apply a semi-complicated alignment heruistic between
|
||||
# `pred_text` and `orig_text` to get a character-to-charcter alignment. This
|
||||
# Therefore, we have to apply a semi-complicated alignment heuristic between
|
||||
# `pred_text` and `orig_text` to get a character-to-character alignment. This
|
||||
# can fail in certain cases in which case we just return `orig_text`.
|
||||
|
||||
def _strip_spaces(text):
|
||||
|
@ -15,6 +15,8 @@
|
||||
# limitations under the License.
|
||||
"""BERT finetuning runner."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import logging
|
||||
@ -31,7 +33,7 @@ from torch.utils.data.distributed import DistributedSampler
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
|
||||
from pytorch_pretrained_bert.modeling import BertForMultipleChoice
|
||||
from pytorch_pretrained_bert.modeling import (BertForMultipleChoice, BertConfig, WEIGHTS_NAME, CONFIG_NAME)
|
||||
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
|
||||
from pytorch_pretrained_bert.tokenization import BertTokenizer
|
||||
|
||||
|
@ -15,6 +15,8 @@
|
||||
# limitations under the License.
|
||||
"""PyTorch OpenAI GPT-2 model."""
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import collections
|
||||
import copy
|
||||
import json
|
||||
|
@ -15,6 +15,8 @@
|
||||
# limitations under the License.
|
||||
"""PyTorch OpenAI GPT model."""
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import collections
|
||||
import copy
|
||||
import json
|
||||
|
@ -18,6 +18,8 @@
|
||||
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import os
|
||||
import copy
|
||||
import json
|
||||
|
Loading…
Reference in New Issue
Block a user