mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
parent
cc8941d881
commit
e566adc09c
51
model_cards/deepset/gbert-base/README.md
Normal file
51
model_cards/deepset/gbert-base/README.md
Normal file
@ -0,0 +1,51 @@
|
||||
---
|
||||
language: de
|
||||
license: mit
|
||||
datasets:
|
||||
- wikipedia
|
||||
- OPUS
|
||||
- OpenLegalData
|
||||
---
|
||||
|
||||
# German BERT base
|
||||
|
||||
Released, Oct 2020, this is a German BERT language model trained collaboratively by the makers of the original German BERT (aka "bert-base-german-cased") and the dbmdz BERT (aka bert-base-german-dbmdz-cased). In our [paper](https://arxiv.org/pdf/2010.10906.pdf), we outline the steps taken to train our model and show that it outperforms its predecessors.
|
||||
|
||||
## Overview
|
||||
**Paper:** [here](https://arxiv.org/pdf/2010.10906.pdf)
|
||||
**Architecture:** BERT base
|
||||
**Language:** German
|
||||
|
||||
## Performance
|
||||
```
|
||||
GermEval18 Coarse: 78.17
|
||||
GermEval18 Fine: 50.90
|
||||
GermEval14: 87.98
|
||||
```
|
||||
|
||||
See also:
|
||||
deepset/gbert-base
|
||||
deepset/gbert-large
|
||||
deepset/gelectra-base
|
||||
deepset/gelectra-large
|
||||
deepset/gelectra-base-generator
|
||||
deepset/gelectra-large-generator
|
||||
|
||||
## Authors
|
||||
Branden Chan: `branden.chan [at] deepset.ai`
|
||||
Stefan Schweter: `stefan [at] schweter.eu`
|
||||
Timo Möller: `timo.moeller [at] deepset.ai`
|
||||
|
||||
## About us
|
||||

|
||||
|
||||
We bring NLP to the industry via open source!
|
||||
Our focus: Industry specific language models & large scale QA systems.
|
||||
|
||||
Some of our work:
|
||||
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
||||
- [FARM](https://github.com/deepset-ai/FARM)
|
||||
- [Haystack](https://github.com/deepset-ai/haystack/)
|
||||
|
||||
Get in touch:
|
||||
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
54
model_cards/deepset/gbert-large/README.md
Normal file
54
model_cards/deepset/gbert-large/README.md
Normal file
@ -0,0 +1,54 @@
|
||||
---
|
||||
language: de
|
||||
license: mit
|
||||
datasets:
|
||||
- wikipedia
|
||||
- OPUS
|
||||
- OpenLegalData
|
||||
- OSCAR
|
||||
---
|
||||
|
||||
# German BERT large
|
||||
|
||||
Released, Oct 2020, this is a German BERT language model trained collaboratively by the makers of the original German BERT (aka "bert-base-german-cased") and the dbmdz BERT (aka bert-base-german-dbmdz-cased). In our [paper](https://arxiv.org/pdf/2010.10906.pdf), we outline the steps taken to train our model and show that it outperforms its predecessors.
|
||||
|
||||
## Overview
|
||||
**Paper:** [here](https://arxiv.org/pdf/2010.10906.pdf)
|
||||
**Architecture:** BERT large
|
||||
**Language:** German
|
||||
|
||||
## Performance
|
||||
```
|
||||
GermEval18 Coarse: 80.08
|
||||
GermEval18 Fine: 52.48
|
||||
GermEval14: 88.16
|
||||
```
|
||||
|
||||
See also:
|
||||
deepset/gbert-base
|
||||
deepset/gbert-large
|
||||
deepset/gelectra-base
|
||||
deepset/gelectra-large
|
||||
deepset/gelectra-base-generator
|
||||
deepset/gelectra-large-generator
|
||||
|
||||
## Authors
|
||||
Branden Chan: `branden.chan [at] deepset.ai`
|
||||
Stefan Schweter: `stefan [at] schweter.eu`
|
||||
Timo Möller: `timo.moeller [at] deepset.ai`
|
||||
|
||||
## About us
|
||||

|
||||
|
||||
We bring NLP to the industry via open source!
|
||||
Our focus: Industry specific language models & large scale QA systems.
|
||||
|
||||
Some of our work:
|
||||
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
||||
- [FARM](https://github.com/deepset-ai/FARM)
|
||||
- [Haystack](https://github.com/deepset-ai/haystack/)
|
||||
|
||||
Get in touch:
|
||||
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
||||
|
||||
|
46
model_cards/deepset/gelectra-base-generator/README.md
Normal file
46
model_cards/deepset/gelectra-base-generator/README.md
Normal file
@ -0,0 +1,46 @@
|
||||
---
|
||||
language: de
|
||||
license: mit
|
||||
datasets:
|
||||
- wikipedia
|
||||
- OPUS
|
||||
- OpenLegalData
|
||||
---
|
||||
|
||||
# German ELECTRA base generator
|
||||
|
||||
Released, Oct 2020, this is the generator component of the German ELECTRA language model trained collaboratively by the makers of the original German BERT (aka "bert-base-german-cased") and the dbmdz BERT (aka bert-base-german-dbmdz-cased). In our [paper](https://arxiv.org/pdf/2010.10906.pdf), we outline the steps taken to train our model.
|
||||
|
||||
The generator is useful for performing masking experiments. If you are looking for a regular language model for embedding extraction, or downstream tasks like NER, classification or QA, please use deepset/gelectra-base.
|
||||
|
||||
## Overview
|
||||
**Paper:** [here](https://arxiv.org/pdf/2010.10906.pdf)
|
||||
**Architecture:** ELECTRA base (generator)
|
||||
**Language:** German
|
||||
|
||||
See also:
|
||||
deepset/gbert-base
|
||||
deepset/gbert-large
|
||||
deepset/gelectra-base
|
||||
deepset/gelectra-large
|
||||
deepset/gelectra-base-generator
|
||||
deepset/gelectra-large-generator
|
||||
|
||||
## Authors
|
||||
Branden Chan: `branden.chan [at] deepset.ai`
|
||||
Stefan Schweter: `stefan [at] schweter.eu`
|
||||
Timo Möller: `timo.moeller [at] deepset.ai`
|
||||
|
||||
## About us
|
||||

|
||||
|
||||
We bring NLP to the industry via open source!
|
||||
Our focus: Industry specific language models & large scale QA systems.
|
||||
|
||||
Some of our work:
|
||||
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
||||
- [FARM](https://github.com/deepset-ai/FARM)
|
||||
- [Haystack](https://github.com/deepset-ai/haystack/)
|
||||
|
||||
Get in touch:
|
||||
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
51
model_cards/deepset/gelectra-base/README.md
Normal file
51
model_cards/deepset/gelectra-base/README.md
Normal file
@ -0,0 +1,51 @@
|
||||
---
|
||||
language: de
|
||||
license: mit
|
||||
datasets:
|
||||
- wikipedia
|
||||
- OPUS
|
||||
- OpenLegalData
|
||||
---
|
||||
|
||||
# German ELECTRA base
|
||||
|
||||
Released, Oct 2020, this is a German ELECTRA language model trained collaboratively by the makers of the original German BERT (aka "bert-base-german-cased") and the dbmdz BERT (aka bert-base-german-dbmdz-cased). In our [paper](https://arxiv.org/pdf/2010.10906.pdf), we outline the steps taken to train our model. Our evaluation suggests that this model is somewhat undertrained. For best performance from a base sized model, we recommend deepset/gbert-base
|
||||
|
||||
## Overview
|
||||
**Paper:** [here](https://arxiv.org/pdf/2010.10906.pdf)
|
||||
**Architecture:** ELECTRA base (discriminator)
|
||||
**Language:** German
|
||||
|
||||
## Performance
|
||||
```
|
||||
GermEval18 Coarse: 76.02
|
||||
GermEval18 Fine: 42.22
|
||||
GermEval14: 86.02
|
||||
```
|
||||
|
||||
See also:
|
||||
deepset/gbert-base
|
||||
deepset/gbert-large
|
||||
deepset/gelectra-base
|
||||
deepset/gelectra-large
|
||||
deepset/gelectra-base-generator
|
||||
deepset/gelectra-large-generator
|
||||
|
||||
## Authors
|
||||
Branden Chan: `branden.chan [at] deepset.ai`
|
||||
Stefan Schweter: `stefan [at] schweter.eu`
|
||||
Timo Möller: `timo.moeller [at] deepset.ai`
|
||||
|
||||
## About us
|
||||

|
||||
|
||||
We bring NLP to the industry via open source!
|
||||
Our focus: Industry specific language models & large scale QA systems.
|
||||
|
||||
Some of our work:
|
||||
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
||||
- [FARM](https://github.com/deepset-ai/FARM)
|
||||
- [Haystack](https://github.com/deepset-ai/haystack/)
|
||||
|
||||
Get in touch:
|
||||
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
56
model_cards/deepset/gelectra-large-generator/README.md
Normal file
56
model_cards/deepset/gelectra-large-generator/README.md
Normal file
@ -0,0 +1,56 @@
|
||||
---
|
||||
language: de
|
||||
license: mit
|
||||
datasets:
|
||||
- wikipedia
|
||||
- OPUS
|
||||
- OpenLegalData
|
||||
- OSCAR
|
||||
---
|
||||
|
||||
# German ELECTRA large generator
|
||||
|
||||
Released, Oct 2020, this is the generator component of the German ELECTRA language model trained collaboratively by the makers of the original German BERT (aka "bert-base-german-cased") and the dbmdz BERT (aka bert-base-german-dbmdz-cased). In our [paper](https://arxiv.org/pdf/2010.10906.pdf), we outline the steps taken to train our model.
|
||||
|
||||
The generator is useful for performing masking experiments. If you are looking for a regular language model for embedding extraction, or downstream tasks like NER, classification or QA, please use deepset/gelectra-large.
|
||||
|
||||
## Overview
|
||||
**Paper:** [here](https://arxiv.org/pdf/2010.10906.pdf)
|
||||
**Architecture:** ELECTRA large (generator)
|
||||
**Language:** German
|
||||
|
||||
## Performance
|
||||
```
|
||||
GermEval18 Coarse: 80.70
|
||||
GermEval18 Fine: 55.16
|
||||
GermEval14: 88.95
|
||||
```
|
||||
|
||||
See also:
|
||||
deepset/gbert-base
|
||||
deepset/gbert-large
|
||||
deepset/gelectra-base
|
||||
deepset/gelectra-large
|
||||
deepset/gelectra-base-generator
|
||||
deepset/gelectra-large-generator
|
||||
|
||||
## Authors
|
||||
Branden Chan: `branden.chan [at] deepset.ai`
|
||||
Stefan Schweter: `stefan [at] schweter.eu`
|
||||
Timo Möller: `timo.moeller [at] deepset.ai`
|
||||
|
||||
## About us
|
||||

|
||||
|
||||
We bring NLP to the industry via open source!
|
||||
Our focus: Industry specific language models & large scale QA systems.
|
||||
|
||||
Some of our work:
|
||||
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
||||
- [FARM](https://github.com/deepset-ai/FARM)
|
||||
- [Haystack](https://github.com/deepset-ai/haystack/)
|
||||
|
||||
Get in touch:
|
||||
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
||||
|
||||
|
52
model_cards/deepset/gelectra-large/README.md
Normal file
52
model_cards/deepset/gelectra-large/README.md
Normal file
@ -0,0 +1,52 @@
|
||||
---
|
||||
language: de
|
||||
license: mit
|
||||
datasets:
|
||||
- wikipedia
|
||||
- OPUS
|
||||
- OpenLegalData
|
||||
- OSCAR
|
||||
---
|
||||
|
||||
# German ELECTRA large
|
||||
|
||||
Released, Oct 2020, this is a German ELECTRA language model trained collaboratively by the makers of the original German BERT (aka "bert-base-german-cased") and the dbmdz BERT (aka bert-base-german-dbmdz-cased). In our [paper](https://arxiv.org/pdf/2010.10906.pdf), we outline the steps taken to train our model and show that this is the state of the art German language model.
|
||||
|
||||
## Overview
|
||||
**Paper:** [here](https://arxiv.org/pdf/2010.10906.pdf)
|
||||
**Architecture:** ELECTRA large (discriminator)
|
||||
**Language:** German
|
||||
|
||||
## Performance
|
||||
```
|
||||
GermEval18 Coarse: 80.70
|
||||
GermEval18 Fine: 55.16
|
||||
GermEval14: 88.95
|
||||
```
|
||||
|
||||
See also:
|
||||
deepset/gbert-base
|
||||
deepset/gbert-large
|
||||
deepset/gelectra-base
|
||||
deepset/gelectra-large
|
||||
deepset/gelectra-base-generator
|
||||
deepset/gelectra-large-generator
|
||||
|
||||
## Authors
|
||||
Branden Chan: `branden.chan [at] deepset.ai`
|
||||
Stefan Schweter: `stefan [at] schweter.eu`
|
||||
Timo Möller: `timo.moeller [at] deepset.ai`
|
||||
|
||||
## About us
|
||||

|
||||
|
||||
We bring NLP to the industry via open source!
|
||||
Our focus: Industry specific language models & large scale QA systems.
|
||||
|
||||
Some of our work:
|
||||
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
||||
- [FARM](https://github.com/deepset-ai/FARM)
|
||||
- [Haystack](https://github.com/deepset-ai/haystack/)
|
||||
|
||||
Get in touch:
|
||||
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
Loading…
Reference in New Issue
Block a user