mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Fix syntax for class references (#14644)
This commit is contained in:
parent
e9688875bf
commit
e513c16e82
@ -326,8 +326,8 @@ class FlaxGenerationMixin:
|
||||
self, top_k: int = None, top_p: float = None, temperature: float = None
|
||||
) -> FlaxLogitsProcessorList:
|
||||
"""
|
||||
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
||||
:obj:`~transformers.FlaxLogitsWarper` instances used for multinomial sampling.
|
||||
This class returns a :class:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
||||
:class:`~transformers.FlaxLogitsWarper` instances used for multinomial sampling.
|
||||
"""
|
||||
|
||||
# init warp parameters
|
||||
@ -358,8 +358,8 @@ class FlaxGenerationMixin:
|
||||
forced_eos_token_id: int,
|
||||
) -> FlaxLogitsProcessorList:
|
||||
"""
|
||||
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
||||
:obj:`~transformers.FlaxLogitsProcessor` instances used to modify the scores of the language model head.
|
||||
This class returns a :class:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
||||
:class:`~transformers.FlaxLogitsProcessor` instances used to modify the scores of the language model head.
|
||||
"""
|
||||
processors = FlaxLogitsProcessorList()
|
||||
|
||||
|
@ -535,8 +535,8 @@ class GenerationMixin:
|
||||
self, top_k: int = None, top_p: float = None, temperature: float = None, num_beams: int = None
|
||||
) -> LogitsProcessorList:
|
||||
"""
|
||||
This class returns a :obj:`~transformers.LogitsProcessorList` list object that contains all relevant
|
||||
:obj:`~transformers.LogitsWarper` instances used for multinomial sampling.
|
||||
This class returns a :class:`~transformers.LogitsProcessorList` list object that contains all relevant
|
||||
:class:`~transformers.LogitsWarper` instances used for multinomial sampling.
|
||||
"""
|
||||
|
||||
# init warp parameters
|
||||
@ -575,8 +575,8 @@ class GenerationMixin:
|
||||
remove_invalid_values: bool,
|
||||
) -> LogitsProcessorList:
|
||||
"""
|
||||
This class returns a :obj:`~transformers.LogitsProcessorList` list object that contains all relevant
|
||||
:obj:`~transformers.LogitsProcessor` instances used to modify the scores of the language model head.
|
||||
This class returns a :class:`~transformers.LogitsProcessorList` list object that contains all relevant
|
||||
:class:`~transformers.LogitsProcessor` instances used to modify the scores of the language model head.
|
||||
"""
|
||||
processors = LogitsProcessorList()
|
||||
|
||||
|
@ -737,7 +737,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
|
||||
Prepare the output of the saved model. Each model must implement this function.
|
||||
|
||||
Args:
|
||||
output (:obj:`~transformers.TFBaseModelOutput`):
|
||||
output (:class:`~transformers.TFBaseModelOutput`):
|
||||
The output returned by the model.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
@ -1277,7 +1277,7 @@ class TapasTokenizer(PreTrainedTokenizer):
|
||||
Total number of table columns
|
||||
max_length (:obj:`int`):
|
||||
Total maximum length.
|
||||
truncation_strategy (:obj:`str` or :obj:`~transformers.TapasTruncationStrategy`):
|
||||
truncation_strategy (:obj:`str` or :class:`~transformers.TapasTruncationStrategy`):
|
||||
Truncation strategy to use. Seeing as this method should only be called when truncating, the only
|
||||
available strategy is the :obj:`"drop_rows_to_fit"` strategy.
|
||||
|
||||
|
@ -372,13 +372,13 @@ def pipeline(
|
||||
- :obj:`"summarization"`: will return a :class:`~transformers.SummarizationPipeline`:.
|
||||
- :obj:`"zero-shot-classification"`: will return a :class:`~transformers.ZeroShotClassificationPipeline`:.
|
||||
|
||||
model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`):
|
||||
model (:obj:`str` or :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`, `optional`):
|
||||
The model that will be used by the pipeline to make predictions. This can be a model identifier or an
|
||||
actual instance of a pretrained model inheriting from :class:`~transformers.PreTrainedModel` (for PyTorch)
|
||||
or :class:`~transformers.TFPreTrainedModel` (for TensorFlow).
|
||||
|
||||
If not provided, the default for the :obj:`task` will be loaded.
|
||||
config (:obj:`str` or :obj:`~transformers.PretrainedConfig`, `optional`):
|
||||
config (:obj:`str` or :class:`~transformers.PretrainedConfig`, `optional`):
|
||||
The configuration that will be used by the pipeline to instantiate the model. This can be a model
|
||||
identifier or an actual pretrained model configuration inheriting from
|
||||
:class:`~transformers.PretrainedConfig`.
|
||||
@ -386,7 +386,7 @@ def pipeline(
|
||||
If not provided, the default configuration file for the requested model will be used. That means that if
|
||||
:obj:`model` is given, its default configuration will be used. However, if :obj:`model` is not supplied,
|
||||
this :obj:`task`'s default model's config is used instead.
|
||||
tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`):
|
||||
tokenizer (:obj:`str` or :class:`~transformers.PreTrainedTokenizer`, `optional`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
|
||||
identifier or an actual pretrained tokenizer inheriting from :class:`~transformers.PreTrainedTokenizer`.
|
||||
|
||||
@ -394,7 +394,7 @@ def pipeline(
|
||||
:obj:`model` is not specified or not a string, then the default tokenizer for :obj:`config` is loaded (if
|
||||
it is a string). However, if :obj:`config` is also not given or not a string, then the default tokenizer
|
||||
for the given :obj:`task` will be loaded.
|
||||
feature_extractor (:obj:`str` or :obj:`~transformers.PreTrainedFeatureExtractor`, `optional`):
|
||||
feature_extractor (:obj:`str` or :class:`~transformers.PreTrainedFeatureExtractor`, `optional`):
|
||||
The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
|
||||
identifier or an actual pretrained feature extractor inheriting from
|
||||
:class:`~transformers.PreTrainedFeatureExtractor`.
|
||||
|
@ -93,7 +93,7 @@ class AudioClassificationPipeline(Pipeline):
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Classify the sequence(s) given as inputs. See the :obj:`~transformers.AutomaticSpeechRecognitionPipeline`
|
||||
Classify the sequence(s) given as inputs. See the :class:`~transformers.AutomaticSpeechRecognitionPipeline`
|
||||
documentation for more information.
|
||||
|
||||
Args:
|
||||
|
@ -77,13 +77,13 @@ class AutomaticSpeechRecognitionPipeline(Pipeline):
|
||||
def __init__(self, feature_extractor: Union["SequenceFeatureExtractor", str], *args, **kwargs):
|
||||
"""
|
||||
Arguments:
|
||||
feature_extractor (:obj:`~transformers.SequenceFeatureExtractor`):
|
||||
feature_extractor (:class:`~transformers.SequenceFeatureExtractor`):
|
||||
The feature extractor that will be used by the pipeline to encode waveform for the model.
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
model (:class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting
|
||||
from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel`
|
||||
for TensorFlow.
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
tokenizer (:class:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`):
|
||||
@ -114,7 +114,7 @@ class AutomaticSpeechRecognitionPipeline(Pipeline):
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Classify the sequence(s) given as inputs. See the :obj:`~transformers.AutomaticSpeechRecognitionPipeline`
|
||||
Classify the sequence(s) given as inputs. See the :class:`~transformers.AutomaticSpeechRecognitionPipeline`
|
||||
documentation for more information.
|
||||
|
||||
Args:
|
||||
|
@ -644,11 +644,11 @@ class _ScikitCompat(ABC):
|
||||
|
||||
PIPELINE_INIT_ARGS = r"""
|
||||
Arguments:
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
model (:class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
tokenizer (:class:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`):
|
||||
|
@ -16,11 +16,11 @@ class FeatureExtractionPipeline(Pipeline):
|
||||
`huggingface.co/models <https://huggingface.co/models>`__.
|
||||
|
||||
Arguments:
|
||||
model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`):
|
||||
model (:class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`):
|
||||
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
|
||||
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
|
||||
TensorFlow.
|
||||
tokenizer (:obj:`~transformers.PreTrainedTokenizer`):
|
||||
tokenizer (:class:`~transformers.PreTrainedTokenizer`):
|
||||
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
|
||||
:class:`~transformers.PreTrainedTokenizer`.
|
||||
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`):
|
||||
|
@ -154,7 +154,7 @@ class ZeroShotClassificationPipeline(Pipeline):
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Classify the sequence(s) given as inputs. See the :obj:`~transformers.ZeroShotClassificationPipeline`
|
||||
Classify the sequence(s) given as inputs. See the :class:`~transformers.ZeroShotClassificationPipeline`
|
||||
documentation for more information.
|
||||
|
||||
Args:
|
||||
|
@ -239,7 +239,7 @@ class Trainer:
|
||||
compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
|
||||
The function that will be used to compute metrics at evaluation. Must take a
|
||||
:class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
|
||||
callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`):
|
||||
callbacks (List of :class:`~transformers.TrainerCallback`, `optional`):
|
||||
A list of callbacks to customize the training loop. Will add those to the list of default callbacks
|
||||
detailed in :doc:`here <callback>`.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user