mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 03:01:07 +06:00
Fix red CI: benchmark script (#34351)
* dont'trigger always * fux * oups * update * ?? * ? * aie
This commit is contained in:
parent
c42b3223db
commit
e50bf61dec
12
.github/workflows/benchmark.yml
vendored
12
.github/workflows/benchmark.yml
vendored
@ -18,21 +18,17 @@ jobs:
|
|||||||
name: Benchmark
|
name: Benchmark
|
||||||
runs-on:
|
runs-on:
|
||||||
group: aws-g5-4xlarge-cache
|
group: aws-g5-4xlarge-cache
|
||||||
|
if: |
|
||||||
|
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
|
||||||
|
(github.event_name == 'push' && github.ref == 'refs/heads/main')
|
||||||
container:
|
container:
|
||||||
image: huggingface/transformers-pytorch-gpu
|
image: huggingface/transformers-pytorch-gpu
|
||||||
options: --gpus all --privileged --ipc host
|
options: --gpus all --privileged --ipc host
|
||||||
steps:
|
steps:
|
||||||
- name: Get repo
|
- name: Get repo
|
||||||
if: github.event_name == 'pull_request'
|
|
||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
ref: ${{ github.event.pull_request.head.sha }}
|
ref: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||||
|
|
||||||
- name: Get repo
|
|
||||||
if: github.event_name == 'push'
|
|
||||||
uses: actions/checkout@v4
|
|
||||||
with:
|
|
||||||
ref: ${{ github.sha }}
|
|
||||||
|
|
||||||
- name: Install libpq-dev & psql
|
- name: Install libpq-dev & psql
|
||||||
run: |
|
run: |
|
||||||
|
82
scripts/deberta_scrtipt.py
Normal file
82
scripts/deberta_scrtipt.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
import torch
|
||||||
|
from transformers import pipeline, AutoTokenizer, AutoModel, AutoModelForMaskedLM
|
||||||
|
import time
|
||||||
|
|
||||||
|
test_sentence = 'Do you [MASK] the muffin man?'
|
||||||
|
|
||||||
|
# for comparison
|
||||||
|
bert = pipeline('fill-mask', model = 'bert-base-uncased')
|
||||||
|
print('\n'.join([d['sequence'] for d in bert(test_sentence)]))
|
||||||
|
|
||||||
|
|
||||||
|
deberta = pipeline('fill-mask', model = 'microsoft/deberta-v3-base', model_kwargs={"legacy": False})
|
||||||
|
print('\n'.join([d['sequence'] for d in deberta(test_sentence)]))
|
||||||
|
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
|
||||||
|
|
||||||
|
tokenized_dict = tokenizer(
|
||||||
|
["Is this working",], ["Not yet",],
|
||||||
|
return_tensors="pt"
|
||||||
|
)
|
||||||
|
|
||||||
|
deberta.model.forward = torch.compile(deberta.model.forward)
|
||||||
|
start=time.time()
|
||||||
|
deberta.model(**tokenized_dict)
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
start=time.time()
|
||||||
|
deberta.model(**tokenized_dict)
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
start=time.time()
|
||||||
|
deberta.model(**tokenized_dict)
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
model = AutoModel.from_pretrained('microsoft/deberta-base')
|
||||||
|
model.config.return_dict = False
|
||||||
|
model.config.output_hidden_states=False
|
||||||
|
input_tuple = (tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
||||||
|
|
||||||
|
|
||||||
|
start=time.time()
|
||||||
|
traced_model = torch.jit.trace(model, input_tuple)
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
start=time.time()
|
||||||
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
start=time.time()
|
||||||
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
start=time.time()
|
||||||
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
start=time.time()
|
||||||
|
traced_model(tokenized_dict['input_ids'], tokenized_dict['attention_mask'])
|
||||||
|
end=time.time()
|
||||||
|
print(end-start)
|
||||||
|
|
||||||
|
|
||||||
|
torch.jit.save(traced_model, "compiled_deberta.pt")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# my_script_module = torch.jit.script(model)
|
Loading…
Reference in New Issue
Block a user