mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
[Wav2Vec2-Conf / LLaMA] Style fix (#26188)
* torch.nn -> nn * fix llama * copies
This commit is contained in:
parent
8b5da9fc6e
commit
e4e55af79c
@ -99,7 +99,7 @@ class OpenLlamaRMSNorm(nn.Module):
|
||||
|
||||
|
||||
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->OpenLlama
|
||||
class OpenLlamaRotaryEmbedding(torch.nn.Module):
|
||||
class OpenLlamaRotaryEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||||
super().__init__()
|
||||
|
||||
|
@ -89,7 +89,7 @@ class LlamaRMSNorm(nn.Module):
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
class LlamaRotaryEmbedding(torch.nn.Module):
|
||||
class LlamaRotaryEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||||
super().__init__()
|
||||
|
||||
|
@ -584,7 +584,7 @@ class Wav2Vec2ConformerConvolutionModule(nn.Module):
|
||||
if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
|
||||
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
|
||||
self.layer_norm = nn.LayerNorm(config.hidden_size)
|
||||
self.pointwise_conv1 = torch.nn.Conv1d(
|
||||
self.pointwise_conv1 = nn.Conv1d(
|
||||
config.hidden_size,
|
||||
2 * config.hidden_size,
|
||||
kernel_size=1,
|
||||
@ -592,8 +592,8 @@ class Wav2Vec2ConformerConvolutionModule(nn.Module):
|
||||
padding=0,
|
||||
bias=False,
|
||||
)
|
||||
self.glu = torch.nn.GLU(dim=1)
|
||||
self.depthwise_conv = torch.nn.Conv1d(
|
||||
self.glu = nn.GLU(dim=1)
|
||||
self.depthwise_conv = nn.Conv1d(
|
||||
config.hidden_size,
|
||||
config.hidden_size,
|
||||
config.conv_depthwise_kernel_size,
|
||||
@ -602,9 +602,9 @@ class Wav2Vec2ConformerConvolutionModule(nn.Module):
|
||||
groups=config.hidden_size,
|
||||
bias=False,
|
||||
)
|
||||
self.batch_norm = torch.nn.BatchNorm1d(config.hidden_size)
|
||||
self.batch_norm = nn.BatchNorm1d(config.hidden_size)
|
||||
self.activation = ACT2FN[config.hidden_act]
|
||||
self.pointwise_conv2 = torch.nn.Conv1d(
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
config.hidden_size,
|
||||
config.hidden_size,
|
||||
kernel_size=1,
|
||||
@ -612,7 +612,7 @@ class Wav2Vec2ConformerConvolutionModule(nn.Module):
|
||||
padding=0,
|
||||
bias=False,
|
||||
)
|
||||
self.dropout = torch.nn.Dropout(config.conformer_conv_dropout)
|
||||
self.dropout = nn.Dropout(config.conformer_conv_dropout)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.layer_norm(hidden_states)
|
||||
@ -798,7 +798,7 @@ class Wav2Vec2ConformerEncoderLayer(nn.Module):
|
||||
|
||||
# Self-Attention
|
||||
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
|
||||
self.self_attn_dropout = torch.nn.Dropout(dropout)
|
||||
self.self_attn_dropout = nn.Dropout(dropout)
|
||||
self.self_attn = Wav2Vec2ConformerSelfAttention(config)
|
||||
|
||||
# Conformer Convolution
|
||||
|
Loading…
Reference in New Issue
Block a user