update desc for map in all examples (#12226)

* update desc for map in all examples

* added plm

* suggestions
This commit is contained in:
Bhavitvya Malik 2021-06-18 01:07:31 +05:30 committed by GitHub
parent adb70eda4d
commit e43e11260f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 84 additions and 7 deletions

View File

@ -1,4 +1,4 @@
torch >= 1.3
datasets >= 1.1.3
datasets >= 1.8.0
sentencepiece != 0.1.92
protobuf

View File

@ -46,10 +46,12 @@ from transformers import (
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
@ -355,6 +357,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if data_args.block_size is None:
@ -401,6 +404,7 @@ def main():
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
if training_args.do_train:

View File

@ -48,9 +48,13 @@ from transformers import (
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@ -300,6 +304,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if args.block_size is None:
@ -346,6 +351,7 @@ def main():
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
train_dataset = lm_datasets["train"]

View File

@ -45,10 +45,12 @@ from transformers import (
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
@ -380,6 +382,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset line_by_line",
)
else:
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
@ -394,6 +397,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on every text in dataset",
)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
@ -424,6 +428,7 @@ def main():
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {max_seq_length}",
)
if training_args.do_train:

View File

@ -48,9 +48,11 @@ from transformers import (
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@ -346,6 +348,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset line_by_line",
)
else:
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
@ -360,6 +363,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on every text in dataset",
)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
@ -390,6 +394,7 @@ def main():
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc=f"Grouping texts in chunks of {max_seq_length}",
)
train_dataset = tokenized_datasets["train"]

View File

@ -41,10 +41,12 @@ from transformers import (
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
@ -358,6 +360,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset line_by_line",
)
else:
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
@ -370,6 +373,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on every text in dataset",
)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
@ -400,6 +404,7 @@ def main():
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {max_seq_length}",
)
if training_args.do_train:

View File

@ -1,2 +1,2 @@
datasets >= 1.4.0
datasets >= 1.8.0
torch >= 1.3.0

View File

@ -42,11 +42,13 @@ from transformers import (
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from utils_qa import postprocess_qa_predictions
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
logger = logging.getLogger(__name__)
@ -417,6 +419,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if data_args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
@ -478,6 +481,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if data_args.max_eval_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
@ -497,6 +501,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if data_args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again

View File

@ -41,11 +41,13 @@ from transformers import (
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from utils_qa import postprocess_qa_predictions_with_beam_search
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
logger = logging.getLogger(__name__)
@ -429,6 +431,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if data_args.max_train_samples is not None:
# Select samples from dataset again since Feature Creation might increase number of features
@ -514,6 +517,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if data_args.max_eval_samples is not None:
# Selecting Samples from Dataset again since Feature Creation might increase samples size
@ -533,6 +537,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if data_args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again

View File

@ -46,11 +46,13 @@ from transformers import (
set_seed,
)
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from utils_qa import postprocess_qa_predictions_with_beam_search
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
logger = logging.getLogger(__name__)
@ -419,6 +421,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
@ -503,6 +506,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if args.max_eval_samples is not None:
@ -523,6 +527,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again

View File

@ -48,11 +48,13 @@ from transformers import (
set_seed,
)
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from utils_qa import postprocess_qa_predictions
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
logger = logging.getLogger(__name__)
# You should update this to your particular problem to have better documentation of `model_type`
@ -448,6 +450,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
@ -508,6 +511,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if args.max_eval_samples is not None:
@ -528,6 +532,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again

View File

@ -1,4 +1,4 @@
datasets >= 1.1.3
datasets >= 1.8.0
sentencepiece != 0.1.92
protobuf
rouge-score

View File

@ -43,10 +43,12 @@ from transformers import (
from transformers.file_utils import is_offline_mode
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
logger = logging.getLogger(__name__)
@ -433,6 +435,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
@ -448,6 +451,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
@ -463,6 +467,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator

View File

@ -48,9 +48,12 @@ from transformers import (
set_seed,
)
from transformers.file_utils import is_offline_mode
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@ -419,7 +422,11 @@ def main():
return model_inputs
processed_datasets = raw_datasets.map(
preprocess_function, batched=True, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache
preprocess_function,
batched=True,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
train_dataset = processed_datasets["train"]

View File

@ -1,3 +1,3 @@
seqeval
datasets >= 1.1.3
datasets >= 1.8.0
torch >= 1.3

View File

@ -42,10 +42,12 @@ from transformers import (
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
logger = logging.getLogger(__name__)
@ -388,6 +390,7 @@ def main():
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
@ -401,6 +404,7 @@ def main():
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
@ -414,6 +418,7 @@ def main():
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator

View File

@ -45,9 +45,12 @@ from transformers import (
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@ -381,7 +384,10 @@ def main():
return tokenized_inputs
processed_raw_datasets = raw_datasets.map(
tokenize_and_align_labels, batched=True, remove_columns=raw_datasets["train"].column_names
tokenize_and_align_labels,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_raw_datasets["train"]

View File

@ -1,4 +1,4 @@
datasets >= 1.1.3
datasets >= 1.8.0
sentencepiece != 0.1.92
protobuf
sacrebleu >= 1.4.12

View File

@ -46,10 +46,12 @@ from transformers import (
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
logger = logging.getLogger(__name__)
@ -427,6 +429,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
@ -442,6 +445,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
@ -457,6 +461,7 @@ def main():
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator

View File

@ -48,9 +48,12 @@ from transformers import (
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@ -401,6 +404,7 @@ def main():
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
train_dataset = processed_datasets["train"]