mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
[model_cards] DialoGPT: How to use + thumbnail + conversational tag
cc @dreasysnail Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
parent
5085df995f
commit
e43afb1bb8
@ -1,3 +1,9 @@
|
||||
---
|
||||
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
|
||||
tags:
|
||||
- conversational
|
||||
---
|
||||
|
||||
## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
|
||||
|
||||
DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
|
||||
@ -18,3 +24,30 @@ The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
|
||||
Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
|
||||
|
||||
ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
|
||||
|
||||
### How to use
|
||||
|
||||
Now we are ready to try out how the model works as a chatting partner!
|
||||
|
||||
```python
|
||||
from transformers import AutoModelWithLMHead, AutoTokenizer
|
||||
import torch
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
||||
model = AutoModelWithLMHead.from_pretrained("microsoft/DialoGPT-large")
|
||||
|
||||
# Let's chat for 5 lines
|
||||
for step in range(5):
|
||||
# encode the new user input, add the eos_token and return a tensor in Pytorch
|
||||
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
|
||||
|
||||
# append the new user input tokens to the chat history
|
||||
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
||||
|
||||
# generated a response while limiting the total chat history to 1000 tokens,
|
||||
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
||||
|
||||
# pretty print last ouput tokens from bot
|
||||
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
||||
```
|
||||
|
@ -1,3 +1,9 @@
|
||||
---
|
||||
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
|
||||
tags:
|
||||
- conversational
|
||||
---
|
||||
|
||||
## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
|
||||
|
||||
DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
|
||||
@ -18,3 +24,30 @@ The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
|
||||
Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
|
||||
|
||||
ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
|
||||
|
||||
### How to use
|
||||
|
||||
Now we are ready to try out how the model works as a chatting partner!
|
||||
|
||||
```python
|
||||
from transformers import AutoModelWithLMHead, AutoTokenizer
|
||||
import torch
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
||||
model = AutoModelWithLMHead.from_pretrained("microsoft/DialoGPT-medium")
|
||||
|
||||
# Let's chat for 5 lines
|
||||
for step in range(5):
|
||||
# encode the new user input, add the eos_token and return a tensor in Pytorch
|
||||
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
|
||||
|
||||
# append the new user input tokens to the chat history
|
||||
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
||||
|
||||
# generated a response while limiting the total chat history to 1000 tokens,
|
||||
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
||||
|
||||
# pretty print last ouput tokens from bot
|
||||
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
||||
```
|
||||
|
@ -1,3 +1,9 @@
|
||||
---
|
||||
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
|
||||
tags:
|
||||
- conversational
|
||||
---
|
||||
|
||||
## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
|
||||
|
||||
DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
|
||||
@ -18,3 +24,30 @@ The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
|
||||
Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
|
||||
|
||||
ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
|
||||
|
||||
### How to use
|
||||
|
||||
Now we are ready to try out how the model works as a chatting partner!
|
||||
|
||||
```python
|
||||
from transformers import AutoModelWithLMHead, AutoTokenizer
|
||||
import torch
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
||||
model = AutoModelWithLMHead.from_pretrained("microsoft/DialoGPT-small")
|
||||
|
||||
# Let's chat for 5 lines
|
||||
for step in range(5):
|
||||
# encode the new user input, add the eos_token and return a tensor in Pytorch
|
||||
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
|
||||
|
||||
# append the new user input tokens to the chat history
|
||||
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
||||
|
||||
# generated a response while limiting the total chat history to 1000 tokens,
|
||||
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
||||
|
||||
# pretty print last ouput tokens from bot
|
||||
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user