mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Create model card for CodeBERTaPy (#3309)
This commit is contained in:
parent
0f1bc0d68e
commit
e41212c715
123
model_cards/mrm8488/CodeBERTaPy/README.md
Normal file
123
model_cards/mrm8488/CodeBERTaPy/README.md
Normal file
@ -0,0 +1,123 @@
|
||||
---
|
||||
language: code
|
||||
thumbnail:
|
||||
---
|
||||
|
||||
# CodeBERTaPy
|
||||
|
||||
CodeBERTaPy is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub for `python` by [Manuel Romero](https://twitter.com/mrm8488)
|
||||
|
||||
The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`.
|
||||
|
||||
Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta).
|
||||
|
||||
The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full `python` corpus for 4 epochs.
|
||||
|
||||
## Quick start: masked language modeling prediction
|
||||
|
||||
```python
|
||||
PYTHON_CODE = """
|
||||
fruits = ['apples', 'bananas', 'oranges']
|
||||
for idx, <mask> in enumerate(fruits):
|
||||
print("index is %d and value is %s" % (idx, val))
|
||||
""".lstrip()
|
||||
```
|
||||
|
||||
### Does the model know how to complete simple Python code?
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
fill_mask = pipeline(
|
||||
"fill-mask",
|
||||
model="mrm8488/CodeBERTaPy",
|
||||
tokenizer="mrm8488/CodeBERTaPy"
|
||||
)
|
||||
|
||||
fill_mask(PYTHON_CODE)
|
||||
|
||||
## Top 5 predictions:
|
||||
|
||||
'val' # prob 0.980728805065155
|
||||
'value'
|
||||
'idx'
|
||||
',val'
|
||||
'_'
|
||||
```
|
||||
|
||||
### Yes! That was easy 🎉 Let's try with another Flask like example
|
||||
|
||||
```python
|
||||
PYTHON_CODE2 = """
|
||||
@app.route('/<name>')
|
||||
def hello_name(name):
|
||||
return "Hello {}!".format(<mask>)
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run()
|
||||
""".lstrip()
|
||||
|
||||
|
||||
fill_mask(PYTHON_CODE2)
|
||||
|
||||
## Top 5 predictions:
|
||||
|
||||
'name' # prob 0.9961813688278198
|
||||
' name'
|
||||
'url'
|
||||
'description'
|
||||
'self'
|
||||
```
|
||||
|
||||
### Yeah! It works 🎉 Let's try with another Tensorflow/Keras like example
|
||||
|
||||
```python
|
||||
PYTHON_CODE3="""
|
||||
model = keras.Sequential([
|
||||
keras.layers.Flatten(input_shape=(28, 28)),
|
||||
keras.layers.<mask>(128, activation='relu'),
|
||||
keras.layers.Dense(10, activation='softmax')
|
||||
])
|
||||
""".lstrip()
|
||||
|
||||
|
||||
fill_mask(PYTHON_CODE3)
|
||||
|
||||
## Top 5 predictions:
|
||||
|
||||
'Dense' # prob 0.4482928514480591
|
||||
'relu'
|
||||
'Flatten'
|
||||
'Activation'
|
||||
'Conv'
|
||||
```
|
||||
|
||||
> Great! 🎉
|
||||
|
||||
## This work is heavely inspired on [CodeBERTa](https://github.com/huggingface/transformers/blob/master/model_cards/huggingface/CodeBERTa-small-v1/README.md) by huggingface team
|
||||
|
||||
<br>
|
||||
|
||||
## CodeSearchNet citation
|
||||
|
||||
<details>
|
||||
|
||||
```bibtex
|
||||
@article{husain_codesearchnet_2019,
|
||||
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
|
||||
shorttitle = {{CodeSearchNet} {Challenge}},
|
||||
url = {http://arxiv.org/abs/1909.09436},
|
||||
urldate = {2020-03-12},
|
||||
journal = {arXiv:1909.09436 [cs, stat]},
|
||||
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
|
||||
month = sep,
|
||||
year = {2019},
|
||||
note = {arXiv: 1909.09436},
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
|
||||
|
||||
> Made with <span style="color: #e25555;">♥</span> in Spain
|
Loading…
Reference in New Issue
Block a user