mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Make XLMRoberta
model and config independent from Roberta
(#19359)
* remove config dependence * remove dependencies from xlm_roberta * Fix style * Fix comments * various fixes * Fix pre-trained model name
This commit is contained in:
parent
8cb44aaf17
commit
e38cf93e7c
@ -2125,6 +2125,7 @@ else:
|
||||
"XLMRobertaForSequenceClassification",
|
||||
"XLMRobertaForTokenClassification",
|
||||
"XLMRobertaModel",
|
||||
"XLMRobertaPreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.xlm_roberta_xl"].extend(
|
||||
@ -4805,6 +4806,7 @@ if TYPE_CHECKING:
|
||||
XLMRobertaForSequenceClassification,
|
||||
XLMRobertaForTokenClassification,
|
||||
XLMRobertaModel,
|
||||
XLMRobertaPreTrainedModel,
|
||||
)
|
||||
from .models.xlm_roberta_xl import (
|
||||
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
|
@ -68,6 +68,7 @@ else:
|
||||
"XLMRobertaForSequenceClassification",
|
||||
"XLMRobertaForTokenClassification",
|
||||
"XLMRobertaModel",
|
||||
"XLMRobertaPreTrainedModel",
|
||||
]
|
||||
|
||||
try:
|
||||
@ -139,6 +140,7 @@ if TYPE_CHECKING:
|
||||
XLMRobertaForSequenceClassification,
|
||||
XLMRobertaForTokenClassification,
|
||||
XLMRobertaModel,
|
||||
XLMRobertaPreTrainedModel,
|
||||
)
|
||||
|
||||
try:
|
||||
|
@ -17,9 +17,9 @@
|
||||
from collections import OrderedDict
|
||||
from typing import Mapping
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
from ...utils import logging
|
||||
from ..roberta.configuration_roberta import RobertaConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
@ -42,15 +42,114 @@ XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
}
|
||||
|
||||
|
||||
class XLMRobertaConfig(RobertaConfig):
|
||||
"""
|
||||
This class overrides [`RobertaConfig`]. Please check the superclass for the appropriate documentation alongside
|
||||
usage examples. Instantiating a configuration with the defaults will yield a similar configuration to that of the
|
||||
XLMRoBERTa [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture.
|
||||
"""
|
||||
class XLMRobertaConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It
|
||||
is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture.
|
||||
Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa
|
||||
[xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 30522):
|
||||
Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by
|
||||
the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 12):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
intermediate_size (`int`, *optional*, defaults to 3072):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||||
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||||
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||||
The dropout ratio for the attention probabilities.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size (`int`, *optional*, defaults to 2):
|
||||
The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or
|
||||
[`TFXLMRobertaModel`].
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the layer normalization layers.
|
||||
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
||||
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
||||
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
||||
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
||||
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
||||
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
classifier_dropout (`float`, *optional*):
|
||||
The dropout ratio for the classification head.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from transformers import XLMRobertaModel, XLMRobertaConfig
|
||||
|
||||
>>> # Initializing a XLM-RoBERTa xlm-roberta-base style configuration
|
||||
>>> configuration = XLMRobertaConfig()
|
||||
|
||||
>>> # Initializing a model from the xlm-roberta-base style configuration
|
||||
>>> model = XLMRobertaModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "xlm-roberta"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=30522,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-12,
|
||||
pad_token_id=1,
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
position_embedding_type="absolute",
|
||||
use_cache=True,
|
||||
classifier_dropout=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.position_embedding_type = position_embedding_type
|
||||
self.use_cache = use_cache
|
||||
self.classifier_dropout = classifier_dropout
|
||||
|
||||
|
||||
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRoberta
|
||||
class XLMRobertaOnnxConfig(OnnxConfig):
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -5689,6 +5689,13 @@ class XLMRobertaModel(metaclass=DummyObject):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class XLMRobertaPreTrainedModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user