pass the matching trainer log level to deepspeed (#12401)

This commit is contained in:
Stas Bekman 2021-06-28 11:43:24 -07:00 committed by GitHub
parent 7e22609e0f
commit e277074889
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -295,11 +295,13 @@ def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
"""
import deepspeed
from deepspeed.utils import logger as ds_logger
model = trainer.model
args = trainer.args
hf_deepspeed_config = trainer.args.hf_deepspeed_config
hf_deepspeed_config.trainer_config_finalize(trainer.args, model, num_training_steps)
hf_deepspeed_config = args.hf_deepspeed_config
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
# resume config update - some bits like `model` and `num_training_steps` only become available during train
config = hf_deepspeed_config.config
@ -319,7 +321,7 @@ def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
optimizer = None
if "optimizer" in config:
if trainer.args.adafactor:
if args.adafactor:
raise ValueError(
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
"Only one optimizer can be configured."
@ -356,6 +358,9 @@ def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
# keep for quick debug:
# from pprint import pprint; pprint(config)
# set the Deepspeed log level consistent with the trainer
ds_logger.setLevel(args.get_process_log_level())
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model, optimizer, _, lr_scheduler = deepspeed.initialize(