mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
Fix undeterministic order in modular dependencies (#39005)
* sort correctly * Update modeling_minimax.py * Update modular_model_converter.py
This commit is contained in:
parent
bdf5fb70aa
commit
e1e11b0299
@ -14,6 +14,7 @@ class MyNewModelConfig(PretrainedConfig):
|
||||
This is the configuration class to store the configuration of a [`MyNewModelModel`]. It is used to instantiate an MyNewModel
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the MyNewModel-7B.
|
||||
e.g. [meta-my_new_model/MyNewModel-2-7b-hf](https://huggingface.co/meta-my_new_model/MyNewModel-2-7b-hf)
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
@ -4,37 +4,25 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_dummy.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...cache_utils import Cache, DynamicCache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...masking_utils import create_causal_mask
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging
|
||||
from .configuration_dummy import DummyConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -232,14 +220,7 @@ class DummyAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
@ -311,27 +292,7 @@ class DummyDecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
DUMMY_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`DummyConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Dummy Model outputting raw hidden-states without any specific head on top.",
|
||||
DUMMY_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class DummyPreTrainedModel(PreTrainedModel):
|
||||
config_class = DummyConfig
|
||||
base_model_prefix = "model"
|
||||
@ -360,88 +321,8 @@ class DummyPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
DUMMY_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Dummy Model outputting raw hidden-states without any specific head on top.",
|
||||
DUMMY_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class DummyModel(DummyPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DummyDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: DummyConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: DummyConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -465,7 +346,7 @@ class DummyModel(DummyPreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(DUMMY_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
@ -513,8 +394,12 @@ class DummyModel(DummyPreTrainedModel):
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||
causal_mask = create_causal_mask(
|
||||
config=self.config,
|
||||
input_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
@ -559,126 +444,3 @@ class DummyModel(DummyPreTrainedModel):
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
@ -14,24 +14,16 @@ from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
||||
from ...utils import (
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
get_torch_version,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, get_torch_version, logging
|
||||
from .configuration_dummy_bert import DummyBertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "google-dummy_bert/dummy_bert-base-uncased"
|
||||
_CONFIG_FOR_DOC = "DummyBertConfig"
|
||||
|
||||
|
||||
class DummyBertEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word, position and token_type embeddings."""
|
||||
@ -432,7 +424,7 @@ class DummyBertOutput(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DummyBertLayer(nn.Module):
|
||||
class DummyBertLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
@ -557,26 +549,14 @@ class DummyBertEncoder(nn.Module):
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
layer_module.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
@ -739,12 +719,8 @@ def load_tf_weights_in_dummy_bert(model, config, tf_checkpoint_path):
|
||||
return model
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class DummyBertPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = DummyBertConfig
|
||||
load_tf_weights = load_tf_weights_in_dummy_bert
|
||||
base_model_prefix = "dummy_bert"
|
||||
@ -770,79 +746,8 @@ class DummyBertPreTrainedModel(PreTrainedModel):
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
DUMMY_BERT_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`DummyBertConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
DUMMY_BERT_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.FloatTensor` of shape `({0})`or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||||
1]`:
|
||||
|
||||
- 0 corresponds to a *sentence A* token,
|
||||
- 1 corresponds to a *sentence B* token.
|
||||
|
||||
[What are token type IDs?](../glossary#token-type-ids)
|
||||
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.max_position_embeddings - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare DummyBert Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
DUMMY_BERT_START_DOCSTRING,
|
||||
)
|
||||
class DummyBertModel(DummyBertPreTrainedModel):
|
||||
"""
|
||||
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
||||
all you need](https://huggingface.co/papers/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
@ -852,10 +757,15 @@ class DummyBertModel(DummyBertPreTrainedModel):
|
||||
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
||||
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
||||
"""
|
||||
|
||||
)
|
||||
class DummyBertModel(DummyBertPreTrainedModel):
|
||||
_no_split_modules = ["DummyBertEmbeddings", "DummyBertLayer"]
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
r"""
|
||||
add_pooling_layer (bool, *optional*, defaults to `True`):
|
||||
Whether to add a pooling layer
|
||||
"""
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
@ -884,12 +794,7 @@ class DummyBertModel(DummyBertPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(DUMMY_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
@ -906,26 +811,6 @@ class DummyBertModel(DummyBertPreTrainedModel):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -10,6 +10,7 @@ import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
||||
from ...utils import logging
|
||||
from .configuration_from_uppercase_model import FromUppercaseModelTextConfig, FromUppercaseModelVisionConfig
|
||||
@ -138,7 +139,7 @@ class FromUppercaseModelMLP(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FromUppercaseModelEncoderLayer(nn.Module):
|
||||
class FromUppercaseModelEncoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
|
@ -4,37 +4,25 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_multimodal1.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...cache_utils import Cache, DynamicCache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...masking_utils import create_causal_mask
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging
|
||||
from .configuration_multimodal1 import Multimodal1TextConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -232,14 +220,7 @@ class Multimodal1TextAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
@ -311,27 +292,7 @@ class Multimodal1TextDecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
MULTIMODAL1_TEXT_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`Multimodal1TextConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Multimodal1Text Model outputting raw hidden-states without any specific head on top.",
|
||||
MULTIMODAL1_TEXT_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class Multimodal1TextPreTrainedModel(PreTrainedModel):
|
||||
config_class = Multimodal1TextConfig
|
||||
base_model_prefix = "model"
|
||||
@ -360,88 +321,8 @@ class Multimodal1TextPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
MULTIMODAL1_TEXT_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Multimodal1Text Model outputting raw hidden-states without any specific head on top.",
|
||||
MULTIMODAL1_TEXT_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Multimodal1TextDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: Multimodal1TextConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: Multimodal1TextConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -465,7 +346,7 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL1_TEXT_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
@ -513,8 +394,12 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||
causal_mask = create_causal_mask(
|
||||
config=self.config,
|
||||
input_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
@ -559,126 +444,3 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
@ -13,15 +13,10 @@ from torch import nn
|
||||
from transformers.utils import add_start_docstrings
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...utils import (
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
torch_int,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging, torch_int
|
||||
from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig
|
||||
|
||||
|
||||
@ -229,7 +224,7 @@ class Multimodal2Attention(nn.Module):
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class Multimodal2VisionEncoderLayer(nn.Module):
|
||||
class Multimodal2VisionEncoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
@ -344,15 +339,6 @@ class Multimodal2VisionEncoder(nn.Module):
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
encoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
causal_attention_mask,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
@ -458,24 +444,6 @@ class Multimodal2VisionEmbeddings(nn.Module):
|
||||
return embeddings
|
||||
|
||||
|
||||
MULTIMODAL2_VISION_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||||
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||||
[`AutoImageProcessor`]. See [`Multimodal2ImageProcessor.__call__`] for details.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
|
||||
Whether to interpolate the pre-trained position encodings.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
class Multimodal2VisionTransformer(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
@ -488,8 +456,7 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
@ -497,10 +464,6 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
interpolate_pos_encoding: Optional[bool] = False,
|
||||
) -> BaseModelOutputWithPooling:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -530,17 +493,15 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
)
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class Multimodal2VisionPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = Multimodal2Config
|
||||
base_model_prefix = "multimodal2_vision"
|
||||
supports_gradient_checkpointing = True
|
||||
_supports_sdpa = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
@ -567,8 +528,7 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
return self.vision_model.embeddings.patch_embedding
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
@ -577,9 +537,7 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
interpolate_pos_encoding: bool = False,
|
||||
) -> BaseModelOutputWithPooling:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
Examples:
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from PIL import Image
|
||||
|
@ -4,36 +4,24 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_my_new_model2.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...cache_utils import Cache, DynamicCache
|
||||
from ...masking_utils import create_causal_mask
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple, logging
|
||||
from .configuration_my_new_model2 import MyNewModel2Config
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -230,14 +218,7 @@ class MyNewModel2Attention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
@ -309,27 +290,7 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
MY_NEW_MODEL2_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`MyNewModel2Config`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare MyNewModel2 Model outputting raw hidden-states without any specific head on top.",
|
||||
MY_NEW_MODEL2_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class MyNewModel2PreTrainedModel(PreTrainedModel):
|
||||
config_class = MyNewModel2Config
|
||||
base_model_prefix = "model"
|
||||
@ -358,88 +319,8 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
MY_NEW_MODEL2_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare MyNewModel2 Model outputting raw hidden-states without any specific head on top.",
|
||||
MY_NEW_MODEL2_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MyNewModel2DecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: MyNewModel2Config
|
||||
"""
|
||||
|
||||
def __init__(self, config: MyNewModel2Config):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -463,19 +344,19 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MY_NEW_MODEL2_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs, # NOOP kwarg for now
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> BaseModelOutputWithPast:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
@ -507,8 +388,12 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||
causal_mask = create_causal_mask(
|
||||
config=self.config,
|
||||
input_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
# embed positions
|
||||
@ -540,6 +425,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
@ -560,132 +446,9 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The MyNewModel2 Model transformer with a sequence classification head on top (linear layer).
|
||||
|
||||
[`MyNewModel2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
||||
@ -696,8 +459,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
||||
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
||||
each row of the batch).
|
||||
""",
|
||||
MY_NEW_MODEL2_START_DOCSTRING,
|
||||
"""
|
||||
)
|
||||
class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
def __init__(self, config):
|
||||
@ -716,7 +478,7 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MY_NEW_MODEL2_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
|
@ -22,30 +22,19 @@ from .configuration_new_task_model import NewTaskModelConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class NewTaskModelModelOutputWithPast(BaseModelOutputWithPast):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for NewTaskModel outputs, with hidden states and attentions.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
"""
|
||||
)
|
||||
class NewTaskModelModelOutputWithPast(BaseModelOutputWithPast):
|
||||
r"""
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
image_hidden_states (`torch.FloatTensor`, *optional*):
|
||||
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
||||
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
||||
@ -55,11 +44,13 @@ class NewTaskModelModelOutputWithPast(BaseModelOutputWithPast):
|
||||
|
||||
|
||||
@dataclass
|
||||
class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for NewTaskModel causal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
"""
|
||||
)
|
||||
class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
r"""
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
|
||||
@ -70,17 +61,6 @@ class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
image_hidden_states (`torch.FloatTensor`, *optional*):
|
||||
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
||||
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
|
||||
@ -157,6 +137,12 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.language_model.set_input_embeddings(value)
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.language_model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.language_model
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask,
|
||||
@ -406,10 +392,13 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
self.model.set_decoder(decoder)
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
return self.model.get_decoder()
|
||||
|
||||
def get_image_features(self, pixel_values):
|
||||
return self.model.get_image_features(pixel_values)
|
||||
|
||||
# Make modules available throught conditional class for BC
|
||||
@property
|
||||
|
@ -14,24 +14,16 @@ from packaging import version
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
||||
from ...utils import (
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
get_torch_version,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, get_torch_version, logging
|
||||
from .configuration_roberta import RobertaConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "google-roberta/roberta-base-uncased"
|
||||
_CONFIG_FOR_DOC = "RobertaConfig"
|
||||
|
||||
|
||||
class RobertaEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word, position and token_type embeddings."""
|
||||
@ -435,7 +427,7 @@ class RobertaOutput(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class RobertaLayer(nn.Module):
|
||||
class RobertaLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
@ -560,26 +552,14 @@ class RobertaEncoder(nn.Module):
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
layer_module.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
@ -742,12 +722,8 @@ def load_tf_weights_in_roberta(model, config, tf_checkpoint_path):
|
||||
return model
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class RobertaPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = RobertaConfig
|
||||
load_tf_weights = load_tf_weights_in_roberta
|
||||
base_model_prefix = "roberta"
|
||||
@ -773,79 +749,8 @@ class RobertaPreTrainedModel(PreTrainedModel):
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
ROBERTA_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`RobertaConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
ROBERTA_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.FloatTensor` of shape `({0})`or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||||
1]`:
|
||||
|
||||
- 0 corresponds to a *sentence A* token,
|
||||
- 1 corresponds to a *sentence B* token.
|
||||
|
||||
[What are token type IDs?](../glossary#token-type-ids)
|
||||
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.max_position_embeddings - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Roberta Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
ROBERTA_START_DOCSTRING,
|
||||
)
|
||||
class RobertaModel(RobertaPreTrainedModel):
|
||||
"""
|
||||
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
||||
all you need](https://huggingface.co/papers/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
@ -855,10 +760,15 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
||||
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
||||
"""
|
||||
|
||||
)
|
||||
class RobertaModel(RobertaPreTrainedModel):
|
||||
_no_split_modules = ["RobertaEmbeddings", "RobertaLayer"]
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
r"""
|
||||
add_pooling_layer (bool, *optional*, defaults to `True`):
|
||||
Whether to add a pooling layer
|
||||
"""
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
@ -887,12 +797,7 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
@ -909,26 +814,6 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -12,33 +12,17 @@ from torch import nn
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, StaticCache
|
||||
from ...cache_utils import Cache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils import auto_docstring, can_return_tuple
|
||||
from .configuration_super import SuperConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("RMSNorm")
|
||||
class SuperRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
@ -233,14 +217,7 @@ class SuperAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
@ -312,27 +289,7 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
|
||||
return outputs
|
||||
|
||||
|
||||
SUPER_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`SuperConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Super Model outputting raw hidden-states without any specific head on top.",
|
||||
SUPER_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class SuperPreTrainedModel(PreTrainedModel):
|
||||
config_class = SuperConfig
|
||||
base_model_prefix = "model"
|
||||
@ -361,88 +318,8 @@ class SuperPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
SUPER_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Super Model outputting raw hidden-states without any specific head on top.",
|
||||
SUPER_START_DOCSTRING,
|
||||
)
|
||||
@auto_docstring
|
||||
class SuperModel(SuperPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SuperDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: SuperConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: SuperConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
@ -466,7 +343,7 @@ class SuperModel(SuperPreTrainedModel):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(SUPER_INPUTS_DOCSTRING)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
@ -494,126 +371,3 @@ class SuperModel(SuperPreTrainedModel):
|
||||
)
|
||||
out.logits *= 2**4
|
||||
return out
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
# to infer the attention mask.
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
|
||||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||||
attention_mask,
|
||||
inputs_embeds=input_tensor,
|
||||
past_key_values_length=past_seen_tokens,
|
||||
is_training=self.training,
|
||||
):
|
||||
return None
|
||||
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
else:
|
||||
target_length = (
|
||||
attention_mask.shape[-1]
|
||||
if isinstance(attention_mask, torch.Tensor)
|
||||
else past_seen_tokens + sequence_length + 1
|
||||
)
|
||||
|
||||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask,
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||||
|
||||
return causal_mask
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
@ -14,13 +14,9 @@ from ...cache_utils import Cache
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import logging
|
||||
from .configuration_switch_function import SwitchFunctionConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
# Split and rotate. Note that this function is different from e.g. Llama.
|
||||
x1 = x[..., ::2]
|
||||
@ -145,14 +141,7 @@ class SwitchFunctionAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
|
@ -16,17 +16,11 @@ from torch import Tensor, nn
|
||||
from ...activations import ACT2FN
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutput
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...pytorch_utils import meshgrid
|
||||
from ...utils import (
|
||||
ModelOutput,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
is_timm_available,
|
||||
replace_return_docstrings,
|
||||
requires_backends,
|
||||
)
|
||||
from ...utils import ModelOutput, auto_docstring, is_timm_available, requires_backends
|
||||
from ...utils.backbone_utils import load_backbone
|
||||
from .configuration_test_detr import TestDetrConfig
|
||||
|
||||
@ -34,8 +28,6 @@ from .configuration_test_detr import TestDetrConfig
|
||||
if is_timm_available():
|
||||
from timm import create_model
|
||||
|
||||
_CONFIG_FOR_DOC = "TestDetrConfig"
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("MultiScaleDeformableAttention")
|
||||
class MultiScaleDeformableAttention(nn.Module):
|
||||
@ -93,28 +85,20 @@ class MultiScaleDeformableAttention(nn.Module):
|
||||
|
||||
|
||||
@dataclass
|
||||
class TestDetrDecoderOutput(ModelOutput):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for outputs of the TestDetrDecoder. This class adds two attributes to
|
||||
BaseModelOutputWithCrossAttentions, namely:
|
||||
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
|
||||
- a stacked tensor of intermediate reference points.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
"""
|
||||
)
|
||||
class TestDetrDecoderOutput(ModelOutput):
|
||||
r"""
|
||||
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
||||
Stacked intermediate hidden states (output of each layer of the decoder).
|
||||
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
|
||||
Stacked intermediate reference points (reference points of each layer of the decoder).
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
||||
plus the initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
||||
the self-attention heads.
|
||||
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
||||
@ -130,11 +114,13 @@ class TestDetrDecoderOutput(ModelOutput):
|
||||
|
||||
|
||||
@dataclass
|
||||
class TestDetrModelOutput(ModelOutput):
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Base class for outputs of the Deformable DETR encoder-decoder model.
|
||||
|
||||
Args:
|
||||
"""
|
||||
)
|
||||
class TestDetrModelOutput(ModelOutput):
|
||||
r"""
|
||||
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
||||
Initial reference points sent through the Transformer decoder.
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
||||
@ -143,28 +129,6 @@ class TestDetrModelOutput(ModelOutput):
|
||||
Stacked intermediate hidden states (output of each layer of the decoder).
|
||||
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
||||
Stacked intermediate reference points (reference points of each layer of the decoder).
|
||||
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||||
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
|
||||
plus the initial embedding outputs.
|
||||
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
|
||||
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
|
||||
average in the self-attention heads.
|
||||
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
|
||||
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
|
||||
weighted average in the cross-attention heads.
|
||||
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
||||
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
|
||||
layer plus the initial embedding outputs.
|
||||
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
|
||||
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
|
||||
self-attention heads.
|
||||
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
||||
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
||||
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
||||
@ -635,7 +599,7 @@ class TestDetrMultiheadAttention(nn.Module):
|
||||
return attn_output, attn_weights_reshaped
|
||||
|
||||
|
||||
class TestDetrEncoderLayer(nn.Module):
|
||||
class TestDetrEncoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: TestDetrConfig):
|
||||
super().__init__()
|
||||
self.embed_dim = config.d_model
|
||||
@ -724,7 +688,7 @@ class TestDetrEncoderLayer(nn.Module):
|
||||
return outputs
|
||||
|
||||
|
||||
class TestDetrDecoderLayer(nn.Module):
|
||||
class TestDetrDecoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: TestDetrConfig):
|
||||
super().__init__()
|
||||
self.embed_dim = config.d_model
|
||||
@ -837,6 +801,7 @@ class TestDetrDecoderLayer(nn.Module):
|
||||
return outputs
|
||||
|
||||
|
||||
@auto_docstring
|
||||
class TestDetrPreTrainedModel(PreTrainedModel):
|
||||
config_class = TestDetrConfig
|
||||
base_model_prefix = "model"
|
||||
@ -1001,19 +966,6 @@ class TestDetrEncoder(TestDetrPreTrainedModel):
|
||||
for i, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
encoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_embeddings,
|
||||
reference_points,
|
||||
spatial_shapes,
|
||||
spatial_shapes_list,
|
||||
level_start_index,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
@ -1155,31 +1107,17 @@ class TestDetrDecoder(TestDetrPreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
position_embeddings,
|
||||
reference_points_input,
|
||||
spatial_shapes,
|
||||
spatial_shapes_list,
|
||||
level_start_index,
|
||||
encoder_hidden_states,
|
||||
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
||||
encoder_attention_mask,
|
||||
output_attentions,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
position_embeddings=position_embeddings,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
reference_points=reference_points_input,
|
||||
spatial_shapes=spatial_shapes,
|
||||
spatial_shapes_list=spatial_shapes_list,
|
||||
level_start_index=level_start_index,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
@ -1253,67 +1191,11 @@ def build_position_encoding(config):
|
||||
return position_embedding
|
||||
|
||||
|
||||
TEST_DETR_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`TestDetrConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
TEST_DETR_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||||
Pixel values. Padding will be ignored by default should you provide it.
|
||||
|
||||
Pixel values can be obtained using [`AutoImageProcessor`]. See [`TestDetrImageProcessor.__call__`]
|
||||
for details.
|
||||
|
||||
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
||||
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for pixels that are real (i.e. **not masked**),
|
||||
- 0 for pixels that are padding (i.e. **masked**).
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
||||
Not used by default. Can be used to mask object queries.
|
||||
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
||||
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
||||
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
||||
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
||||
can choose to directly pass a flattened representation of an image.
|
||||
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
||||
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
||||
embedded representation.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The bare Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
|
||||
hidden-states without any specific head on top.
|
||||
""",
|
||||
TEST_DETR_START_DOCSTRING,
|
||||
"""
|
||||
)
|
||||
class TestDetrModel(TestDetrPreTrainedModel):
|
||||
def __init__(self, config: TestDetrConfig):
|
||||
@ -1486,8 +1368,7 @@ class TestDetrModel(TestDetrPreTrainedModel):
|
||||
object_query = self.enc_output_norm(self.enc_output(object_query))
|
||||
return object_query, output_proposals
|
||||
|
||||
@add_start_docstrings_to_model_forward(TEST_DETR_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=TestDetrModelOutput, config_class=_CONFIG_FOR_DOC)
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: torch.FloatTensor,
|
||||
@ -1501,7 +1382,14 @@ class TestDetrModel(TestDetrPreTrainedModel):
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple[torch.FloatTensor], TestDetrModelOutput]:
|
||||
r"""
|
||||
Returns:
|
||||
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
||||
Not used by default. Can be used to mask object queries.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
||||
can choose to directly pass a flattened representation of an image.
|
||||
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
||||
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
||||
embedded representation.
|
||||
|
||||
Examples:
|
||||
|
||||
|
@ -469,10 +469,10 @@ class MiniMaxSparseMoeBlock(nn.Module):
|
||||
# this will be used to easily index which expert is going to be sollicitated
|
||||
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
||||
|
||||
expert_hitted = (expert_mask.sum(dim=(-1, -2)) > 0).nonzero(as_tuple=True)[0].tolist()
|
||||
expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
||||
for expert_idx in expert_hitted:
|
||||
expert_layer = self.experts[expert_idx]
|
||||
idx, top_x = torch.where(expert_mask[expert_idx])
|
||||
idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
|
||||
# Index the correct hidden states and compute the expert hidden state for
|
||||
# the current expert. We need to make sure to multiply the output hidden
|
||||
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
||||
|
@ -1439,7 +1439,7 @@ class ModularFileMapper(ModuleMapper):
|
||||
|
||||
original_dependencies = []
|
||||
other_files_dependencies = defaultdict(list)
|
||||
for dep in tuple(missing_dependencies):
|
||||
for dep in sorted(missing_dependencies):
|
||||
if dep in self.added_objects_file_mapping:
|
||||
file = self.added_objects_file_mapping[dep]
|
||||
other_files_dependencies[file].append(dep)
|
||||
|
Loading…
Reference in New Issue
Block a user