mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
optimization_pytorch from OpenAI with adapted HP - check if there is weights decay on bias
This commit is contained in:
parent
d3a8df6b9f
commit
e1bb7904d8
143
optimization_pytorch.py
Normal file
143
optimization_pytorch.py
Normal file
@ -0,0 +1,143 @@
|
||||
import math
|
||||
import torch
|
||||
from torch.optim import Optimizer
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
|
||||
def warmup_cosine(x, warmup=0.002):
|
||||
s = 1 if x <= warmup else 0
|
||||
return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x)))
|
||||
|
||||
def warmup_constant(x, warmup=0.002):
|
||||
s = 1 if x <= warmup else 0
|
||||
return s*(x/warmup) + (1-s)*1
|
||||
|
||||
def warmup_linear(x, warmup=0.002):
|
||||
s = 1 if x <= warmup else 0
|
||||
return (s*(x/warmup) + (1-s))*(1-x)
|
||||
|
||||
SCHEDULES = {
|
||||
'warmup_cosine':warmup_cosine,
|
||||
'warmup_constant':warmup_constant,
|
||||
'warmup_linear':warmup_linear,
|
||||
}
|
||||
|
||||
|
||||
class OpenAIAdam(Optimizer):
|
||||
"""Implements Open AI version of Adam algorithm with weight decay fix.
|
||||
"""
|
||||
def __init__(self, params, lr, schedule, warmup, t_total,
|
||||
b1=0.9, b2=0.999, e=1e-6, l2=0,
|
||||
vector_l2=False, max_grad_norm=-1, **kwargs):
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if schedule not in SCHEDULES:
|
||||
raise ValueError("Invalid schedule parameter: {}".format(schedule))
|
||||
if not 0 <= warmup:
|
||||
raise ValueError("Invalid warmup: {}".format(warmup))
|
||||
if not 0.0 <= b1 < 1.0:
|
||||
raise ValueError("Invalid b1 parameter: {}".format(b1))
|
||||
if not 0.0 <= b2 < 1.0:
|
||||
raise ValueError("Invalid b2 parameter: {}".format(b2))
|
||||
if not 0.0 <= e:
|
||||
raise ValueError("Invalid epsilon value: {}".format(e))
|
||||
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
|
||||
b1=b1, b2=b2, e=e, l2=l2, vector_l2=vector_l2,
|
||||
max_grad_norm=max_grad_norm)
|
||||
super(OpenAIAdam, self).__init__(params, defaults)
|
||||
|
||||
def get_lr(self):
|
||||
lr = []
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
state = self.state[p]
|
||||
if len(state) == 0:
|
||||
return [0]
|
||||
schedule_fct = SCHEDULES[group['schedule']]
|
||||
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
|
||||
lr.append(lr_scheduled)
|
||||
return lr
|
||||
|
||||
def to(self, device):
|
||||
""" Move the optimizer state to a specified device"""
|
||||
for state in self.state.values():
|
||||
state['exp_avg'].to(device)
|
||||
state['exp_avg_sq'].to(device)
|
||||
|
||||
def initialize_step(self, initial_step):
|
||||
"""Initialize state with a defined step (but we don't have stored averaged).
|
||||
Arguments:
|
||||
initial_step (int): Initial step number.
|
||||
"""
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
state = self.state[p]
|
||||
# State initialization
|
||||
state['step'] = initial_step
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p.data)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||||
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p.data)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
beta1, beta2 = group['b1'], group['b2']
|
||||
|
||||
state['step'] += 1
|
||||
|
||||
# Add grad clipping
|
||||
if group['max_grad_norm'] > 0:
|
||||
clip_grad_norm_(p, group['max_grad_norm'])
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||
denom = exp_avg_sq.sqrt().add_(group['e'])
|
||||
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
|
||||
schedule_fct = SCHEDULES[group['schedule']]
|
||||
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
|
||||
step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
|
||||
|
||||
p.data.addcdiv_(-step_size, exp_avg, denom)
|
||||
|
||||
# Just adding the square of the weights to the loss function is *not*
|
||||
# the correct way of using L2 regularization/weight decay with Adam,
|
||||
# since that will interact with the m and v parameters in strange ways.
|
||||
#
|
||||
# Instead we want ot decay the weights in a manner that doesn't interact
|
||||
# with the m/v parameters. This is equivalent to adding the square
|
||||
# of the weights to the loss with plain (non-momentum) SGD.
|
||||
if (len(p.size()) > 1 or group['vector_l2']) and group['l2'] > 0:
|
||||
p.data.add_(-lr_scheduled * group['l2'], p.data)
|
||||
|
||||
return loss
|
Loading…
Reference in New Issue
Block a user