mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 10:41:07 +06:00
Cast bfloat16 to float32 for Numpy conversions (#29755)
* Cast bfloat16 to float32 for Numpy conversions * Add test
This commit is contained in:
parent
73a73b415e
commit
de627f5a14
@ -249,7 +249,10 @@ def load_pytorch_weights_in_tf2_model(
|
|||||||
)
|
)
|
||||||
raise
|
raise
|
||||||
|
|
||||||
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
|
# Numpy doesn't understand bfloat16, so upcast to a dtype that doesn't lose precision
|
||||||
|
pt_state_dict = {
|
||||||
|
k: v.numpy() if v.dtype != torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items()
|
||||||
|
}
|
||||||
return load_pytorch_state_dict_in_tf2_model(
|
return load_pytorch_state_dict_in_tf2_model(
|
||||||
tf_model,
|
tf_model,
|
||||||
pt_state_dict,
|
pt_state_dict,
|
||||||
|
@ -63,6 +63,7 @@ if is_tf_available():
|
|||||||
PreTrainedModel,
|
PreTrainedModel,
|
||||||
PushToHubCallback,
|
PushToHubCallback,
|
||||||
RagRetriever,
|
RagRetriever,
|
||||||
|
TFAutoModel,
|
||||||
TFBertForMaskedLM,
|
TFBertForMaskedLM,
|
||||||
TFBertForSequenceClassification,
|
TFBertForSequenceClassification,
|
||||||
TFBertModel,
|
TFBertModel,
|
||||||
@ -435,6 +436,16 @@ class TFModelUtilsTest(unittest.TestCase):
|
|||||||
for p1, p2 in zip(model.weights, new_model.weights):
|
for p1, p2 in zip(model.weights, new_model.weights):
|
||||||
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
|
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
|
||||||
|
|
||||||
|
@is_pt_tf_cross_test
|
||||||
|
@require_safetensors
|
||||||
|
def test_bfloat16_torch_loading(self):
|
||||||
|
# Assert that neither of these raise an error - both repos contain bfloat16 tensors
|
||||||
|
model1 = TFAutoModel.from_pretrained("Rocketknight1/tiny-random-gpt2-bfloat16-pt", from_pt=True)
|
||||||
|
model2 = TFAutoModel.from_pretrained("Rocketknight1/tiny-random-gpt2-bfloat16") # PT-format safetensors
|
||||||
|
# Check that PT and safetensors loading paths end up with the same values
|
||||||
|
for weight1, weight2 in zip(model1.weights, model2.weights):
|
||||||
|
self.assertTrue(tf.reduce_all(weight1 == weight2))
|
||||||
|
|
||||||
@slow
|
@slow
|
||||||
def test_save_pretrained_signatures(self):
|
def test_save_pretrained_signatures(self):
|
||||||
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
|
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
|
||||||
|
Loading…
Reference in New Issue
Block a user