Fix blip2 tests (#38510)
Some checks are pending
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Waiting to run
Build documentation / build (push) Waiting to run
New model PR merged notification / Notify new model (push) Waiting to run
Slow tests on important models (on Push - A10) / Get all modified files (push) Waiting to run
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Blocked by required conditions
Self-hosted runner (push-caller) / Check if setup was changed (push) Waiting to run
Self-hosted runner (push-caller) / build-docker-containers (push) Blocked by required conditions
Self-hosted runner (push-caller) / Trigger Push CI (push) Blocked by required conditions
Secret Leaks / trufflehog (push) Waiting to run
Update Transformers metadata / build_and_package (push) Waiting to run

* fix 1: not sure

* fix 2: _supports_flex_attn = False

* fix 3: embedding_output = self.layernorm(query_embeds.to(self.layernorm.weight.dtype))

* fix 4: query_embeds = query_embeds.to(self.layernorm.weight.dtype)

* fix 5: text_embeds = text_embeds.to(dtype=torch.float16)

* fix 5: question_embeds.to(dtype=torch.float16)

* fix 6: text_embeds = text_embeds.to(dtype=self.itm_head.weight.dtype)

* fix 7: image_embeds and question_embeds

* fix 8: fix other 2 fp16 tests

* fix 9: fix T5 OOM

* fix 10: fix T5 OOM

* fix 11: fix T5

* fix 11: fix T5 beam

* fix 12: _supports_sdpa=False

* fix 12: style and expect

* revert

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
Yih-Dar 2025-06-02 22:46:35 +02:00 committed by GitHub
parent ccc859620a
commit de4cf5a38e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 51 additions and 6 deletions

View File

@ -1196,6 +1196,8 @@ class Blip2QFormerModel(Blip2PreTrainedModel):
query_length if query_length is not None else query_embeds.shape[1] if query_embeds is not None else 0
)
# `Blip2QFormerModel` is kept as fp32
query_embeds = query_embeds.to(self.layernorm.weight.dtype)
embedding_output = self.layernorm(query_embeds)
embedding_output = self.dropout(embedding_output)
@ -1737,6 +1739,7 @@ class Blip2TextModelWithProjection(Blip2PreTrainedModel):
)
pooled_output = text_outputs[0] if not return_dict else text_outputs.last_hidden_state
pooled_output = pooled_output.to(dtype=self.text_projection.weight.dtype)
text_embeds = self.text_projection(pooled_output)
text_embeds = nn.functional.normalize(text_embeds, dim=-1)
@ -1837,6 +1840,7 @@ class Blip2VisionModelWithProjection(Blip2PreTrainedModel):
)
embeds = query_outputs[0] if not return_dict else query_outputs.last_hidden_state
embeds = embeds.to(dtype=self.vision_projection.weight.dtype)
image_embeds = self.vision_projection(embeds)
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
@ -2395,6 +2399,7 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
return_dict=return_dict,
)
text_embeds = text_outputs[0] if not return_dict else text_outputs.last_hidden_state
text_embeds = text_embeds.to(dtype=self.itm_head.weight.dtype)
output = self.itm_head(text_embeds[:, : query_tokens.size(1), :])
logits_per_image = output.mean(dim=1)
@ -2408,6 +2413,7 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
return_dict=return_dict,
)
image_embeds = query_outputs[0] if not return_dict else query_outputs.last_hidden_state
image_embeds = image_embeds.to(dtype=self.vision_projection.weight.dtype)
query_embeds = self.embeddings(
input_ids=input_ids,
@ -2419,6 +2425,7 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
return_dict=return_dict,
)
question_embeds = text_outputs[0] if not return_dict else text_outputs.last_hidden_state
question_embeds = question_embeds.to(dtype=self.text_projection.weight.dtype)
# normalized features
image_embeds = nn.functional.normalize(self.vision_projection(image_embeds), dim=-1)

View File

@ -24,6 +24,8 @@ from parameterized import parameterized
from transformers import CONFIG_MAPPING, Blip2Config, Blip2QFormerConfig, Blip2VisionConfig
from transformers.testing_utils import (
Expectations,
cleanup,
require_torch,
require_torch_accelerator,
require_torch_fp16,
@ -1620,6 +1622,12 @@ def prepare_img():
@require_torch
@slow
class Blip2ModelIntegrationTest(unittest.TestCase):
def setUp(self):
cleanup(torch_device, gc_collect=True)
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def test_inference_opt(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
@ -1698,9 +1706,19 @@ class Blip2ModelIntegrationTest(unittest.TestCase):
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
expectations = Expectations(
{
("cuda", 7): [
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
"a woman is playing with her dog on the beach",
]
}
)
expected_outputs = expectations.get_expectation()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual("woman playing with dog on the beach", generated_text)
self.assertEqual(predictions[0].tolist(), expected_outputs[0])
self.assertEqual(expected_outputs[1], generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
@ -1709,9 +1727,19 @@ class Blip2ModelIntegrationTest(unittest.TestCase):
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
expectations = Expectations(
{
("cuda", 7): [
[0, 3, 7, 152, 2515, 11389, 3523, 1],
"san francisco",
]
}
)
expected_outputs = expectations.get_expectation()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 3, 7, 152, 67, 839, 1])
self.assertEqual(generated_text, "san diego")
self.assertEqual(predictions[0].tolist(), expected_outputs[0])
self.assertEqual(generated_text, expected_outputs[1])
def test_inference_t5_batched_beam_search(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
@ -1725,9 +1753,19 @@ class Blip2ModelIntegrationTest(unittest.TestCase):
predictions = model.generate(**inputs, num_beams=2)
expectations = Expectations(
{
("cuda", 7): [
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
[0, 3, 9, 2335, 19, 1556, 28, 160, 1782, 30, 8, 2608, 1],
]
}
)
expected_predictions = expectations.get_expectation()
# Test output (in this case, slightly different from greedy search)
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual(predictions[1].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual(predictions[0].tolist(), expected_predictions[0])
self.assertEqual(predictions[1].tolist(), expected_predictions[1])
@require_torch_multi_accelerator
def test_inference_opt_multi_accelerator(self):