mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 04:40:06 +06:00
remove ipex_optimize_model usage (#38632)
* remove ipex_optimize_model usage Signed-off-by: YAO Matrix <matrix.yao@intel.com> * update Dockerfile Signed-off-by: root <root@a4bf01945cfe.jf.intel.com> --------- Signed-off-by: YAO Matrix <matrix.yao@intel.com> Signed-off-by: root <root@a4bf01945cfe.jf.intel.com> Co-authored-by: root <root@a4bf01945cfe.jf.intel.com>
This commit is contained in:
parent
5009252a05
commit
dc76eff12b
@ -10,8 +10,6 @@ SHELL ["sh", "-lc"]
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.6.0'
|
||||
# (not always a valid torch version)
|
||||
ARG INTEL_TORCH_EXT='2.3.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu121'
|
||||
# Disable kernel mapping for now until all tests pass
|
||||
@ -32,8 +30,6 @@ RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] &&
|
||||
|
||||
RUN python3 -m pip uninstall -y flax jax
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT -f https://developer.intel.com/ipex-whl-stable-cpu
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
|
@ -78,26 +78,3 @@ python examples/pytorch/question-answering/run_qa.py \
|
||||
--no_cuda \
|
||||
--jit_mode_eval
|
||||
```
|
||||
|
||||
## IPEX
|
||||
|
||||
[Intel Extension for PyTorch](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/getting_started.html) (IPEX) offers additional optimizations for PyTorch on Intel CPUs. IPEX further optimizes TorchScript with [graph optimization](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/graph_optimization.html) which fuses operations like Multi-head attention, Concat Linear, Linear + Add, Linear + Gelu, Add + LayerNorm, and more, into single kernels for faster execution.
|
||||
|
||||
Make sure IPEX is installed, and set the `--use_opex` and `--jit_mode_eval` flags in [`Trainer`] to enable IPEX graph optimization and TorchScript.
|
||||
|
||||
```bash
|
||||
!pip install intel_extension_for_pytorch
|
||||
```
|
||||
|
||||
```bash
|
||||
python examples/pytorch/question-answering/run_qa.py \
|
||||
--model_name_or_path csarron/bert-base-uncased-squad-v1 \
|
||||
--dataset_name squad \
|
||||
--do_eval \
|
||||
--max_seq_length 384 \
|
||||
--doc_stride 128 \
|
||||
--output_dir /tmp/ \
|
||||
--no_cuda \
|
||||
--use_ipex \
|
||||
--jit_mode_eval
|
||||
```
|
||||
|
@ -17,30 +17,9 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
A modern CPU is capable of efficiently training large models by leveraging the underlying optimizations built into the hardware and training on fp16 or bf16 data types.
|
||||
|
||||
This guide focuses on how to train large models on an Intel CPU using mixed precision and the [Intel Extension for PyTorch (IPEX)](https://intel.github.io/intel-extension-for-pytorch/index.html) library.
|
||||
This guide focuses on how to train large models on an Intel CPU using mixed precision. AMP is enabled for CPU backends training with PyTorch.
|
||||
|
||||
You can Find your PyTorch version by running the command below.
|
||||
|
||||
```bash
|
||||
pip list | grep torch
|
||||
```
|
||||
|
||||
Install IPEX with the PyTorch version from above.
|
||||
|
||||
```bash
|
||||
pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the IPEX [installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation) guide for more details.
|
||||
|
||||
IPEX provides additional performance optimizations for Intel CPUs. These include additional CPU instruction level architecture (ISA) support such as [Intel AVX512-VNNI](https://en.wikichip.org/wiki/x86/avx512_vnni) and [Intel AMX](https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html). Both of these features are designed to accelerate matrix multiplication. Older AMD and Intel CPUs with only Intel AVX2, however, aren't guaranteed better performance with IPEX.
|
||||
|
||||
IPEX also supports [Auto Mixed Precision (AMP)](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/amp.html) training with the fp16 and bf16 data types. Reducing precision speeds up training and reduces memory usage because it requires less computation. The loss in accuracy from using full-precision is minimal. 3rd, 4th, and 5th generation Intel Xeon Scalable processors natively support bf16, and the 6th generation processor also natively supports fp16 in addition to bf16.
|
||||
|
||||
AMP is enabled for CPU backends training with PyTorch.
|
||||
|
||||
[`Trainer`] supports AMP training with a CPU by adding the `--use_cpu`, `--use_ipex`, and `--bf16` parameters. The example below demonstrates the [run_qa.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) script.
|
||||
[`Trainer`] supports AMP training with CPU by adding the `--use_cpu`, and `--bf16` parameters. The example below demonstrates the [run_qa.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) script.
|
||||
|
||||
```bash
|
||||
python run_qa.py \
|
||||
@ -54,7 +33,6 @@ python run_qa.py \
|
||||
--max_seq_length 384 \
|
||||
--doc_stride 128 \
|
||||
--output_dir /tmp/debug_squad/ \
|
||||
--use_ipex \
|
||||
--bf16 \
|
||||
--use_cpu
|
||||
```
|
||||
@ -65,7 +43,6 @@ These parameters can also be added to [`TrainingArguments`] as shown below.
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./outputs",
|
||||
bf16=True,
|
||||
use_ipex=True,
|
||||
use_cpu=True,
|
||||
)
|
||||
```
|
||||
|
@ -75,8 +75,7 @@ python3 run_qa.py \
|
||||
--doc_stride 128 \
|
||||
--output_dir /tmp/debug_squad/ \
|
||||
--no_cuda \
|
||||
--ddp_backend ccl \
|
||||
--use_ipex
|
||||
--ddp_backend ccl
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
@ -115,7 +114,6 @@ python3 run_qa.py \
|
||||
--output_dir /tmp/debug_squad/ \
|
||||
--no_cuda \
|
||||
--ddp_backend ccl \
|
||||
--use_ipex \
|
||||
--bf16
|
||||
```
|
||||
|
||||
@ -201,8 +199,7 @@ spec:
|
||||
--output_dir /tmp/pvc-mount/output_$(date +%Y%m%d_%H%M%S) \
|
||||
--no_cuda \
|
||||
--ddp_backend ccl \
|
||||
--bf16 \
|
||||
--use_ipex;
|
||||
--bf16;
|
||||
env:
|
||||
- name: LD_PRELOAD
|
||||
value: "/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4.5.9:/usr/local/lib/libiomp5.so"
|
||||
|
@ -157,7 +157,6 @@ from .utils import (
|
||||
is_galore_torch_available,
|
||||
is_grokadamw_available,
|
||||
is_in_notebook,
|
||||
is_ipex_available,
|
||||
is_liger_kernel_available,
|
||||
is_lomo_available,
|
||||
is_peft_available,
|
||||
@ -1916,29 +1915,6 @@ class Trainer:
|
||||
|
||||
return model
|
||||
|
||||
def ipex_optimize_model(self, model, training=False, dtype=torch.float32):
|
||||
if not is_ipex_available():
|
||||
raise ImportError(
|
||||
"Using IPEX but IPEX is not installed or IPEX's version does not match current PyTorch, please refer"
|
||||
" to https://github.com/intel/intel-extension-for-pytorch."
|
||||
)
|
||||
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
if not training:
|
||||
model.eval()
|
||||
dtype = torch.bfloat16 if not self.is_in_train and self.args.bf16_full_eval else dtype
|
||||
# conv_bn_folding is disabled as it fails in symbolic tracing, resulting in ipex warnings
|
||||
model = ipex.optimize(model, dtype=dtype, level="O1", conv_bn_folding=False, inplace=not self.is_in_train)
|
||||
else:
|
||||
if not model.training:
|
||||
model.train()
|
||||
model, self.optimizer = ipex.optimize(
|
||||
model, dtype=dtype, optimizer=self.optimizer, inplace=True, level="O1"
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
def compare_trainer_and_checkpoint_args(self, training_args, trainer_state):
|
||||
attributes_map = {
|
||||
"logging_steps": "logging_steps",
|
||||
@ -1968,10 +1944,6 @@ class Trainer:
|
||||
logger.warning_once(warning_str)
|
||||
|
||||
def _wrap_model(self, model, training=True, dataloader=None):
|
||||
if self.args.use_ipex:
|
||||
dtype = torch.bfloat16 if self.use_cpu_amp else torch.float32
|
||||
model = self.ipex_optimize_model(model, training, dtype=dtype)
|
||||
|
||||
if is_sagemaker_mp_enabled():
|
||||
# Wrapping the base model twice in a DistributedModel will raise an error.
|
||||
if isinstance(self.model_wrapped, smp.model.DistributedModel):
|
||||
|
@ -1581,6 +1581,12 @@ class TrainingArguments:
|
||||
FutureWarning,
|
||||
)
|
||||
self.use_cpu = self.no_cuda
|
||||
if self.use_ipex:
|
||||
warnings.warn(
|
||||
"using `use_ipex` is deprecated and will be removed in version 4.54 of 🤗 Transformers. "
|
||||
"You only need PyTorch for the needed optimizations on Intel CPU and XPU.",
|
||||
FutureWarning,
|
||||
)
|
||||
|
||||
self.eval_strategy = IntervalStrategy(self.eval_strategy)
|
||||
self.logging_strategy = IntervalStrategy(self.logging_strategy)
|
||||
|
@ -79,7 +79,6 @@ from transformers.testing_utils import (
|
||||
require_deepspeed,
|
||||
require_galore_torch,
|
||||
require_grokadamw,
|
||||
require_intel_extension_for_pytorch,
|
||||
require_liger_kernel,
|
||||
require_lomo,
|
||||
require_non_hpu,
|
||||
@ -1325,37 +1324,6 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
|
||||
train_output = trainer.train()
|
||||
self.assertEqual(train_output.global_step, 10)
|
||||
|
||||
@require_torch_bf16
|
||||
@require_intel_extension_for_pytorch
|
||||
def test_number_of_steps_in_training_with_ipex(self):
|
||||
for mix_bf16 in [True, False]:
|
||||
tmp_dir = self.get_auto_remove_tmp_dir()
|
||||
# Regular training has n_epochs * len(train_dl) steps
|
||||
trainer = get_regression_trainer(
|
||||
learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir
|
||||
)
|
||||
train_output = trainer.train()
|
||||
self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
|
||||
|
||||
# Check passing num_train_epochs works (and a float version too):
|
||||
trainer = get_regression_trainer(
|
||||
learning_rate=0.1,
|
||||
num_train_epochs=1.5,
|
||||
use_ipex=True,
|
||||
bf16=mix_bf16,
|
||||
use_cpu=True,
|
||||
output_dir=tmp_dir,
|
||||
)
|
||||
train_output = trainer.train()
|
||||
self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
|
||||
|
||||
# If we pass a max_steps, num_train_epochs is ignored
|
||||
trainer = get_regression_trainer(
|
||||
learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir
|
||||
)
|
||||
train_output = trainer.train()
|
||||
self.assertEqual(train_output.global_step, 10)
|
||||
|
||||
def test_torch_compile_loss_func_compatibility(self):
|
||||
config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
|
||||
tiny_llama = LlamaForCausalLM(config)
|
||||
@ -2628,69 +2596,6 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
|
||||
expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
|
||||
self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
|
||||
|
||||
@require_torch_bf16
|
||||
@require_intel_extension_for_pytorch
|
||||
def test_evaluate_with_ipex(self):
|
||||
for mix_bf16 in [True, False]:
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
trainer = get_regression_trainer(
|
||||
a=1.5,
|
||||
b=2.5,
|
||||
use_ipex=True,
|
||||
compute_metrics=AlmostAccuracy(),
|
||||
bf16=mix_bf16,
|
||||
use_cpu=True,
|
||||
output_dir=tmp_dir,
|
||||
)
|
||||
results = trainer.evaluate()
|
||||
|
||||
x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
|
||||
pred = 1.5 * x + 2.5
|
||||
expected_loss = ((pred - y) ** 2).mean()
|
||||
self.assertAlmostEqual(results["eval_loss"], expected_loss)
|
||||
expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
|
||||
self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
|
||||
|
||||
# With a number of elements not a round multiple of the batch size
|
||||
trainer = get_regression_trainer(
|
||||
a=1.5,
|
||||
b=2.5,
|
||||
use_ipex=True,
|
||||
eval_len=66,
|
||||
compute_metrics=AlmostAccuracy(),
|
||||
bf16=mix_bf16,
|
||||
use_cpu=True,
|
||||
output_dir=tmp_dir,
|
||||
)
|
||||
results = trainer.evaluate()
|
||||
|
||||
x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
|
||||
pred = 1.5 * x + 2.5
|
||||
expected_loss = ((pred - y) ** 2).mean()
|
||||
self.assertAlmostEqual(results["eval_loss"], expected_loss)
|
||||
expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
|
||||
self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
|
||||
|
||||
# With logits preprocess
|
||||
trainer = get_regression_trainer(
|
||||
a=1.5,
|
||||
b=2.5,
|
||||
use_ipex=True,
|
||||
compute_metrics=AlmostAccuracy(),
|
||||
preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
|
||||
bf16=mix_bf16,
|
||||
use_cpu=True,
|
||||
output_dir=tmp_dir,
|
||||
)
|
||||
results = trainer.evaluate()
|
||||
|
||||
x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
|
||||
pred = 1.5 * x + 2.5
|
||||
expected_loss = ((pred - y) ** 2).mean()
|
||||
self.assertAlmostEqual(results["eval_loss"], expected_loss)
|
||||
expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
|
||||
self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
|
||||
|
||||
def test_predict(self):
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
trainer = get_regression_trainer(a=1.5, b=2.5, output_dir=tmp_dir)
|
||||
@ -2830,57 +2735,6 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
|
||||
self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
|
||||
self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))
|
||||
|
||||
@require_torch_bf16
|
||||
@require_intel_extension_for_pytorch
|
||||
def test_predict_with_ipex(self):
|
||||
for mix_bf16 in [True, False]:
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
trainer = get_regression_trainer(
|
||||
a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir
|
||||
)
|
||||
preds = trainer.predict(trainer.eval_dataset).predictions
|
||||
x = trainer.eval_dataset.x
|
||||
self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
|
||||
|
||||
# With a number of elements not a round multiple of the batch size
|
||||
trainer = get_regression_trainer(
|
||||
a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir
|
||||
)
|
||||
preds = trainer.predict(trainer.eval_dataset).predictions
|
||||
x = trainer.eval_dataset.x
|
||||
self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
|
||||
|
||||
# With more than one output of the model
|
||||
trainer = get_regression_trainer(
|
||||
a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True, output_dir=tmp_dir
|
||||
)
|
||||
preds = trainer.predict(trainer.eval_dataset).predictions
|
||||
x = trainer.eval_dataset.x
|
||||
self.assertEqual(len(preds), 2)
|
||||
self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
|
||||
self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
|
||||
|
||||
# With more than one output/label of the model
|
||||
trainer = get_regression_trainer(
|
||||
a=1.5,
|
||||
b=2.5,
|
||||
double_output=True,
|
||||
label_names=["labels", "labels_2"],
|
||||
use_ipex=True,
|
||||
bf16=mix_bf16,
|
||||
use_cpu=True,
|
||||
output_dir=tmp_dir,
|
||||
)
|
||||
outputs = trainer.predict(trainer.eval_dataset)
|
||||
preds = outputs.predictions
|
||||
labels = outputs.label_ids
|
||||
x = trainer.eval_dataset.x
|
||||
self.assertEqual(len(preds), 2)
|
||||
self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
|
||||
self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
|
||||
self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
|
||||
self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))
|
||||
|
||||
def test_dynamic_shapes(self):
|
||||
eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
|
||||
model = RegressionModel(a=2, b=1)
|
||||
|
Loading…
Reference in New Issue
Block a user