TF: Finalize unpack_inputs-related changes (#16499)

* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests
This commit is contained in:
Joao Gante 2022-04-04 16:37:33 +01:00 committed by GitHub
parent be9474bd35
commit dad5ca83b2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
46 changed files with 78 additions and 287 deletions

View File

@ -312,10 +312,12 @@ def booleans_processing(config, **kwargs):
final_booleans = {} final_booleans = {}
if tf.executing_eagerly(): if tf.executing_eagerly():
# Pure conv models (such as ConvNext) do not have `output_attentions` # Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has
final_booleans["output_attentions"] = kwargs.get("output_attentions", None) # `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`)
if final_booleans["output_attentions"] is None: if "output_attentions" in kwargs:
final_booleans["output_attentions"] = config.output_attentions final_booleans["output_attentions"] = (
kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions
)
final_booleans["output_hidden_states"] = ( final_booleans["output_hidden_states"] = (
kwargs["output_hidden_states"] kwargs["output_hidden_states"]
if kwargs["output_hidden_states"] is not None if kwargs["output_hidden_states"] is not None
@ -330,7 +332,10 @@ def booleans_processing(config, **kwargs):
kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None) kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None)
) )
else: else:
final_booleans["output_attentions"] = config.output_attentions # Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has
# `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`)
if "output_attentions" in kwargs:
final_booleans["output_attentions"] = config.output_attentions
final_booleans["output_hidden_states"] = config.output_hidden_states final_booleans["output_hidden_states"] = config.output_hidden_states
if kwargs.get("return_dict", None) not in (None, True): if kwargs.get("return_dict", None) not in (None, True):
@ -403,7 +408,7 @@ def input_processing(func, config, input_ids, **kwargs):
Two lists, one for the missing layers, and another one for the unexpected layers. Two lists, one for the missing layers, and another one for the unexpected layers.
""" """
signature = dict(inspect.signature(func).parameters) signature = dict(inspect.signature(func).parameters)
signature.pop("kwargs", None) has_kwargs = bool(signature.pop("kwargs", None))
signature.pop("self", None) signature.pop("self", None)
parameter_names = list(signature.keys()) parameter_names = list(signature.keys())
output = {} output = {}
@ -433,12 +438,14 @@ def input_processing(func, config, input_ids, **kwargs):
elif "past_key_values" in kwargs["kwargs_call"] and "past" in parameter_names: elif "past_key_values" in kwargs["kwargs_call"] and "past" in parameter_names:
kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values") kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values")
if len(kwargs["kwargs_call"]) > 0: if has_kwargs:
raise ValueError( output["kwargs"] = kwargs.pop("kwargs_call", {})
f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}." else:
) if len(kwargs["kwargs_call"]) > 0:
raise ValueError(
kwargs.pop("kwargs_call") f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
)
kwargs.pop("kwargs_call")
for k, v in kwargs.items(): for k, v in kwargs.items():
if isinstance(v, allowed_types) or v is None: if isinstance(v, allowed_types) or v is None:

View File

@ -551,7 +551,6 @@ class TFAlbertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -785,7 +784,6 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.albert( outputs = self.albert(
input_ids=input_ids, input_ids=input_ids,
@ -854,7 +852,6 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
sentence_order_label: Optional[Union[np.ndarray, tf.Tensor]] = None, sentence_order_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]: ) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]:
r""" r"""
Return: Return:
@ -976,7 +973,6 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss)
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1064,7 +1060,6 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClass
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1158,7 +1153,6 @@ class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificat
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1244,7 +1238,6 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1355,7 +1348,6 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -679,7 +679,6 @@ class TFBartEncoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
""" """
Args: Args:
@ -834,7 +833,6 @@ class TFBartDecoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
Args: Args:
@ -1273,7 +1271,6 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -737,7 +737,6 @@ class TFBertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder: if not self.config.is_decoder:
@ -1067,7 +1066,6 @@ class TFBertModel(TFBertPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1174,7 +1172,6 @@ class TFBertForPreTraining(TFBertPreTrainedModel, TFBertPreTrainingLoss):
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None, next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBertForPreTrainingOutput, Tuple[tf.Tensor]]: ) -> Union[TFBertForPreTrainingOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1302,7 +1299,6 @@ class TFBertForMaskedLM(TFBertPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1520,7 +1516,6 @@ class TFBertForNextSentencePrediction(TFBertPreTrainedModel, TFNextSentencePredi
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None, next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFNextSentencePredictorOutput, Tuple[tf.Tensor]]: ) -> Union[TFNextSentencePredictorOutput, Tuple[tf.Tensor]]:
r""" r"""
Return: Return:
@ -1628,7 +1623,6 @@ class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1723,7 +1717,6 @@ class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1857,7 +1850,6 @@ class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1949,7 +1941,6 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss)
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -662,7 +662,6 @@ class TFBlenderbotEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
@ -823,7 +822,6 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
@ -1276,7 +1274,6 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r""" r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -667,7 +667,6 @@ class TFBlenderbotSmallEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
@ -827,7 +826,6 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
@ -1253,7 +1251,6 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r""" r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -504,7 +504,6 @@ class TFCLIPTextTransformer(tf.keras.layers.Layer):
output_hidden_states: bool, output_hidden_states: bool,
return_dict: bool, return_dict: bool,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
input_shape = shape_list(input_ids) input_shape = shape_list(input_ids)
@ -593,7 +592,6 @@ class TFCLIPTextMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is None: if input_ids is None:
raise ValueError("You have to specify input_ids") raise ValueError("You have to specify input_ids")
@ -632,7 +630,6 @@ class TFCLIPVisionTransformer(tf.keras.layers.Layer):
output_hidden_states: bool, output_hidden_states: bool,
return_dict: bool, return_dict: bool,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
embedding_output = self.embeddings(pixel_values=pixel_values) embedding_output = self.embeddings(pixel_values=pixel_values)
@ -683,7 +680,6 @@ class TFCLIPVisionMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None: if pixel_values is None:
@ -762,7 +758,6 @@ class TFCLIPMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> tf.Tensor: ) -> tf.Tensor:
if input_ids is None: if input_ids is None:
@ -796,7 +791,6 @@ class TFCLIPMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> tf.Tensor: ) -> tf.Tensor:
if pixel_values is None: if pixel_values is None:
raise ValueError("You have to specify pixel_values") raise ValueError("You have to specify pixel_values")
@ -826,7 +820,6 @@ class TFCLIPMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]: ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
if input_ids is None: if input_ids is None:
@ -1058,7 +1051,6 @@ class TFCLIPTextModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -1153,7 +1145,6 @@ class TFCLIPVisionModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -1258,7 +1249,6 @@ class TFCLIPModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> tf.Tensor: ) -> tf.Tensor:
r""" r"""
Returns: Returns:
@ -1297,7 +1287,6 @@ class TFCLIPModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> tf.Tensor: ) -> tf.Tensor:
r""" r"""
Returns: Returns:
@ -1345,7 +1334,6 @@ class TFCLIPModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]: ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:

View File

@ -581,7 +581,6 @@ class TFConvBertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -751,7 +750,6 @@ class TFConvBertModel(TFConvBertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.convbert( outputs = self.convbert(
input_ids=input_ids, input_ids=input_ids,
@ -870,7 +868,6 @@ class TFConvBertForMaskedLM(TFConvBertPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFMaskedLMOutput]: ) -> Union[Tuple, TFMaskedLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -979,7 +976,6 @@ class TFConvBertForSequenceClassification(TFConvBertPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSequenceClassifierOutput]: ) -> Union[Tuple, TFSequenceClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1073,7 +1069,6 @@ class TFConvBertForMultipleChoice(TFConvBertPreTrainedModel, TFMultipleChoiceLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFMultipleChoiceModelOutput]: ) -> Union[Tuple, TFMultipleChoiceModelOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1188,7 +1183,6 @@ class TFConvBertForTokenClassification(TFConvBertPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFTokenClassifierOutput]: ) -> Union[Tuple, TFTokenClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1268,7 +1262,6 @@ class TFConvBertForQuestionAnswering(TFConvBertPreTrainedModel, TFQuestionAnswer
start_positions: Optional[tf.Tensor] = None, start_positions: Optional[tf.Tensor] = None,
end_positions: Optional[tf.Tensor] = None, end_positions: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFQuestionAnsweringModelOutput]: ) -> Union[Tuple, TFQuestionAnsweringModelOutput]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -293,7 +293,6 @@ class TFConvNextMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
@ -439,7 +438,6 @@ class TFConvNextModel(TFConvNextPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -518,7 +516,6 @@ class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClas
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -268,7 +268,6 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
# If using past key value states, only the last tokens # If using past key value states, only the last tokens
@ -541,7 +540,6 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.transformer( outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
@ -653,7 +651,6 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel, TFCausalLanguageModelingLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -765,7 +762,6 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -928,7 +928,6 @@ class TFDebertaMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -1096,7 +1095,6 @@ class TFDebertaModel(TFDebertaPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.deberta( outputs = self.deberta(
input_ids=input_ids, input_ids=input_ids,
@ -1156,7 +1154,6 @@ class TFDebertaForMaskedLM(TFDebertaPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1242,7 +1239,6 @@ class TFDebertaForSequenceClassification(TFDebertaPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1325,7 +1321,6 @@ class TFDebertaForTokenClassification(TFDebertaPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1404,7 +1399,6 @@ class TFDebertaForQuestionAnswering(TFDebertaPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -1028,7 +1028,6 @@ class TFDebertaV2MainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -1198,7 +1197,6 @@ class TFDebertaV2Model(TFDebertaV2PreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.deberta( outputs = self.deberta(
input_ids=input_ids, input_ids=input_ids,
@ -1259,7 +1257,6 @@ class TFDebertaV2ForMaskedLM(TFDebertaV2PreTrainedModel, TFMaskedLanguageModelin
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1346,7 +1343,6 @@ class TFDebertaV2ForSequenceClassification(TFDebertaV2PreTrainedModel, TFSequenc
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1430,7 +1426,6 @@ class TFDebertaV2ForTokenClassification(TFDebertaV2PreTrainedModel, TFTokenClass
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1510,7 +1505,6 @@ class TFDebertaV2ForQuestionAnswering(TFDebertaV2PreTrainedModel, TFQuestionAnsw
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -372,7 +372,6 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -543,7 +542,6 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.distilbert( outputs = self.distilbert(
input_ids=input_ids, input_ids=input_ids,
@ -647,7 +645,6 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModel
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -735,7 +732,6 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSeque
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -817,7 +813,6 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -911,7 +906,6 @@ class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoic
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1021,7 +1015,6 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAn
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -174,7 +174,6 @@ class TFDPREncoderLayer(tf.keras.layers.Layer):
output_hidden_states: bool = None, output_hidden_states: bool = None,
return_dict: bool = None, return_dict: bool = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]:
outputs = self.bert_model( outputs = self.bert_model(
input_ids=input_ids, input_ids=input_ids,
@ -235,7 +234,6 @@ class TFDPRSpanPredictorLayer(tf.keras.layers.Layer):
output_hidden_states: bool = False, output_hidden_states: bool = False,
return_dict: bool = False, return_dict: bool = False,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length # notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length
n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2] n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2]
@ -294,7 +292,6 @@ class TFDPRSpanPredictor(TFPreTrainedModel):
output_hidden_states: bool = False, output_hidden_states: bool = False,
return_dict: bool = False, return_dict: bool = False,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
outputs = self.encoder( outputs = self.encoder(
input_ids=input_ids, input_ids=input_ids,
@ -328,7 +325,6 @@ class TFDPREncoder(TFPreTrainedModel):
output_hidden_states: bool = False, output_hidden_states: bool = False,
return_dict: bool = False, return_dict: bool = False,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
outputs = self.encoder( outputs = self.encoder(
input_ids=input_ids, input_ids=input_ids,
@ -560,7 +556,6 @@ class TFDPRContextEncoder(TFDPRPretrainedContextEncoder):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFDPRContextEncoderOutput, Tuple[tf.Tensor, ...]]: ) -> Union[TFDPRContextEncoderOutput, Tuple[tf.Tensor, ...]]:
r""" r"""
Return: Return:
@ -648,7 +643,6 @@ class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFDPRQuestionEncoderOutput, Tuple[tf.Tensor, ...]]: ) -> Union[TFDPRQuestionEncoderOutput, Tuple[tf.Tensor, ...]]:
r""" r"""
Return: Return:
@ -734,7 +728,6 @@ class TFDPRReader(TFDPRPretrainedReader):
output_hidden_states: bool = None, output_hidden_states: bool = None,
return_dict=None, return_dict=None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
r""" r"""
Return: Return:

View File

@ -719,7 +719,6 @@ class TFElectraMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder: if not self.config.is_decoder:
use_cache = False use_cache = False
@ -953,7 +952,6 @@ class TFElectraModel(TFElectraPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1043,7 +1041,6 @@ class TFElectraForPreTraining(TFElectraPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]: ) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -1180,7 +1177,6 @@ class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1290,7 +1286,6 @@ class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1383,7 +1378,6 @@ class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1501,7 +1495,6 @@ class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1583,7 +1576,6 @@ class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -23,7 +23,7 @@ import tensorflow as tf
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, input_processing from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, unpack_inputs
from ...tf_utils import shape_list from ...tf_utils import shape_list
from ...utils import ( from ...utils import (
DUMMY_INPUTS, DUMMY_INPUTS,
@ -491,6 +491,7 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config) return cls(encoder=encoder, decoder=decoder, config=config)
@unpack_inputs
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
@ -559,9 +560,7 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
if encoder_outputs is None: if encoder_outputs is None:
encoder_processing_inputs = { encoder_inputs = {
"func": self.encoder.call,
"config": self.encoder.config,
"input_ids": input_ids, "input_ids": input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"inputs_embeds": inputs_embeds, "inputs_embeds": inputs_embeds,
@ -569,14 +568,10 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
"output_hidden_states": output_hidden_states, "output_hidden_states": output_hidden_states,
"return_dict": return_dict, "return_dict": return_dict,
"training": training, "training": training,
"kwargs_call": {},
} }
# Add arguments to encoder from `kwargs_encoder` # Add arguments to encoder from `kwargs_encoder`
for k, v in kwargs_encoder.items(): encoder_inputs.update(kwargs_encoder)
encoder_processing_inputs[k] = v
encoder_inputs = input_processing(**encoder_processing_inputs)
# Handle the case where the inputs are passed as a single dict which contains `labels`. # Handle the case where the inputs are passed as a single dict which contains `labels`.
# The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this
@ -607,9 +602,7 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
labels, self.config.pad_token_id, self.config.decoder_start_token_id labels, self.config.pad_token_id, self.config.decoder_start_token_id
) )
decoder_processing_inputs = { decoder_inputs = {
"func": self.decoder.call,
"config": self.decoder.config,
"input_ids": decoder_input_ids, "input_ids": decoder_input_ids,
"attention_mask": decoder_attention_mask, "attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states, "encoder_hidden_states": encoder_hidden_states,
@ -621,14 +614,11 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
"past_key_values": past_key_values, "past_key_values": past_key_values,
"return_dict": return_dict, "return_dict": return_dict,
"training": training, "training": training,
"kwargs_call": {},
} }
# Add arguments to decoder from `kwargs_decoder` # Add arguments to decoder from `kwargs_decoder`
for k, v in kwargs_decoder.items(): decoder_inputs.update(kwargs_decoder)
decoder_processing_inputs[k] = v
decoder_inputs = input_processing(**decoder_processing_inputs)
decoder_outputs = self.decoder(**decoder_inputs) decoder_outputs = self.decoder(**decoder_inputs)
logits = decoder_outputs[0] logits = decoder_outputs[0]

View File

@ -258,7 +258,6 @@ class TFFlaubertModel(TFFlaubertPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]: ) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer( outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
@ -490,7 +489,6 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]: ) -> Union[Tuple, TFBaseModelOutput]:
# removed: src_enc=None, src_len=None # removed: src_enc=None, src_len=None
@ -808,7 +806,6 @@ class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]: ) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]:
transformer_outputs = self.transformer( transformer_outputs = self.transformer(

View File

@ -761,7 +761,6 @@ class TFFunnelBaseLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -835,7 +834,6 @@ class TFFunnelMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -1117,7 +1115,6 @@ class TFFunnelBaseModel(TFFunnelPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel( return self.funnel(
input_ids=input_ids, input_ids=input_ids,
@ -1165,7 +1162,6 @@ class TFFunnelModel(TFFunnelPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel( return self.funnel(
@ -1293,7 +1289,6 @@ class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss)
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]: ) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1369,7 +1364,6 @@ class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClass
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]: ) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1455,7 +1449,6 @@ class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]: ) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1566,7 +1559,6 @@ class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificat
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]: ) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1645,7 +1637,6 @@ class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringL
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]: ) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -367,7 +367,6 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -730,7 +729,6 @@ class TFGPT2Model(TFGPT2PreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -920,7 +918,6 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1038,7 +1035,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFGPT2DoubleHeadsModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFGPT2DoubleHeadsModelOutput, Tuple[tf.Tensor]]:
r""" r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
@ -1195,7 +1191,6 @@ class TFGPT2ForSequenceClassification(TFGPT2PreTrainedModel, TFSequenceClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -390,7 +390,6 @@ class TFGPTJMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -672,7 +671,6 @@ class TFGPTJModel(TFGPTJPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
): ):
r""" r"""
use_cache (`bool`, *optional*, defaults to `True`): use_cache (`bool`, *optional*, defaults to `True`):
@ -781,7 +779,6 @@ class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
): ):
r""" r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -886,7 +883,6 @@ class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassific
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
): ):
r""" r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1011,7 +1007,6 @@ class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss)
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
): ):
r""" r"""
start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -706,7 +706,6 @@ class TFLayoutLMMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -928,7 +927,6 @@ class TFLayoutLMModel(TFLayoutLMPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -1048,7 +1046,6 @@ class TFLayoutLMForMaskedLM(TFLayoutLMPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1172,7 +1169,6 @@ class TFLayoutLMForSequenceClassification(TFLayoutLMPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1303,7 +1299,6 @@ class TFLayoutLMForTokenClassification(TFLayoutLMPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -1666,7 +1666,6 @@ class TFLEDEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
@ -1911,7 +1910,6 @@ class TFLEDDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
@ -2333,7 +2331,6 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
""" """
Returns: Returns:
@ -2429,7 +2426,7 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
decoder_head_mask=None, decoder_head_mask=None,
use_cache=None, use_cache=None,
encoder_outputs=None, encoder_outputs=None,
**kwargs, **kwargs
): ):
# cut decoder_input_ids if past is used # cut decoder_input_ids if past is used
if past is not None: if past is not None:

View File

@ -1676,7 +1676,6 @@ class TFLongformerMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -2023,7 +2022,6 @@ class TFLongformerModel(TFLongformerPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.longformer( outputs = self.longformer(
@ -2100,7 +2098,6 @@ class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModel
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -2194,7 +2191,6 @@ class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAn
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -2340,7 +2336,6 @@ class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSeque
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]:
if global_attention_mask is None and input_ids is not None: if global_attention_mask is None and input_ids is not None:
@ -2450,7 +2445,6 @@ class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoic
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -2580,7 +2574,6 @@ class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.array, tf.Tensor]] = None, labels: Optional[Union[np.array, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -685,7 +685,6 @@ class TFLxmertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -946,7 +945,6 @@ class TFLxmertModel(TFLxmertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.lxmert( outputs = self.lxmert(
input_ids, input_ids,
@ -1282,7 +1280,6 @@ class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -707,7 +707,6 @@ class TFMarianEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
@ -866,7 +865,6 @@ class TFMarianDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
@ -1296,7 +1294,6 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -684,7 +684,6 @@ class TFMBartEncoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
""" """
Args: Args:
@ -848,7 +847,6 @@ class TFMBartDecoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[ ) -> Union[
TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor] TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]
]: ]:
@ -1278,7 +1276,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
decoder_head_mask: Optional[tf.Tensor] = None, decoder_head_mask: Optional[tf.Tensor] = None,
cross_attn_head_mask: Optional[tf.Tensor] = None, cross_attn_head_mask: Optional[tf.Tensor] = None,
encoder_outputs: Optional[TFBaseModelOutput] = None, encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values: [Tuple[Tuple[tf.Tensor]]] = None, past_key_values: Tuple[Tuple[tf.Tensor]] = None,
inputs_embeds: Optional[tf.Tensor] = None, inputs_embeds: Optional[tf.Tensor] = None,
decoder_inputs_embeds: Optional[tf.Tensor] = None, decoder_inputs_embeds: Optional[tf.Tensor] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
@ -1287,7 +1285,6 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
""" """
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -692,7 +692,6 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -928,7 +927,6 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.mobilebert( outputs = self.mobilebert(
input_ids=input_ids, input_ids=input_ids,
@ -993,7 +991,6 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Return: Return:
@ -1092,7 +1089,6 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1176,7 +1172,6 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS
return_dict=None, return_dict=None,
next_sentence_label=None, next_sentence_label=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Return: Return:
@ -1287,7 +1282,6 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1381,7 +1375,6 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
start_positions=None, start_positions=None,
end_positions=None, end_positions=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1498,7 +1491,6 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1626,7 +1618,6 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -497,7 +497,6 @@ class TFMPNetMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -686,7 +685,6 @@ class TFMPNetModel(TFMPNetPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.mpnet( outputs = self.mpnet(
input_ids=input_ids, input_ids=input_ids,
@ -803,7 +801,6 @@ class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -909,7 +906,6 @@ class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassif
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1000,7 +996,6 @@ class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1112,7 +1107,6 @@ class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificatio
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -249,7 +249,6 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -522,7 +521,6 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]: ) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer( outputs = self.transformer(
@ -586,7 +584,6 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFCausalLMOutput]: ) -> Union[Tuple, TFCausalLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -669,7 +666,6 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]: ) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]:
r""" r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
@ -813,7 +809,6 @@ class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenc
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSequenceClassifierOutput]: ) -> Union[Tuple, TFSequenceClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -710,7 +710,6 @@ class TFPegasusEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
@ -872,7 +871,6 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
@ -1305,7 +1303,6 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
""" """
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -660,7 +660,6 @@ class TFRemBertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder: if not self.config.is_decoder:
@ -959,7 +958,6 @@ class TFRemBertModel(TFRemBertPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1060,7 +1058,6 @@ class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1155,7 +1152,6 @@ class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1283,7 +1279,6 @@ class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1374,7 +1369,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1494,7 +1488,6 @@ class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1575,7 +1568,6 @@ class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -624,7 +624,6 @@ class TFRobertaMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder: if not self.config.is_decoder:
@ -936,7 +935,6 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1093,7 +1091,6 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1196,7 +1193,6 @@ class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1353,7 +1349,6 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1449,7 +1444,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1567,7 +1561,6 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1655,7 +1648,6 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -614,7 +614,6 @@ class TFRoFormerMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -817,7 +816,6 @@ class TFRoFormerModel(TFRoFormerPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.roformer( outputs = self.roformer(
input_ids=input_ids, input_ids=input_ids,
@ -877,7 +875,6 @@ class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -953,7 +950,6 @@ class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1064,7 +1060,6 @@ class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1155,7 +1150,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1269,7 +1263,6 @@ class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1348,7 +1341,6 @@ class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnswer
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -791,7 +791,6 @@ class TFSpeech2TextEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
@ -957,7 +956,6 @@ class TFSpeech2TextDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:

View File

@ -654,7 +654,6 @@ class TFT5MainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
) -> Tuple: ) -> Tuple:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -1152,7 +1151,6 @@ class TFT5Model(TFT5PreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSeq2SeqModelOutput]: ) -> Union[Tuple, TFSeq2SeqModelOutput]:
r""" r"""
Returns: Returns:
@ -1329,7 +1327,6 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSeq2SeqLMOutput]: ) -> Union[Tuple, TFSeq2SeqLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1611,6 +1608,10 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
encoder_config.use_cache = False encoder_config.use_cache = False
self.encoder = TFT5MainLayer(encoder_config, embed_tokens, name="encoder") self.encoder = TFT5MainLayer(encoder_config, embed_tokens, name="encoder")
@property
def dummy_inputs(self):
return {"input_ids": tf.constant(DUMMY_INPUTS)}
def get_encoder(self): def get_encoder(self):
return self.encoder return self.encoder
@ -1627,7 +1628,6 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]: ) -> Union[Tuple, TFBaseModelOutput]:
r""" r"""
Returns: Returns:
@ -1670,6 +1670,19 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
attentions=encoder_outputs.attentions, attentions=encoder_outputs.attentions,
) )
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
# Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output # Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output
def serving_output(self, output): def serving_output(self, output):
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None

View File

@ -770,7 +770,6 @@ class TFTapasMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
@ -980,7 +979,6 @@ class TFTapasModel(TFTapasPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -1067,7 +1065,6 @@ class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1285,7 +1282,6 @@ class TFTapasForQuestionAnswering(TFTapasPreTrainedModel):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]: ) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]:
r""" r"""
table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*):
@ -1602,7 +1598,6 @@ class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):

View File

@ -550,7 +550,6 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
@ -898,7 +897,6 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.transformer( outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
@ -979,7 +977,6 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None: if input_ids is not None:
bsz, tgt_len = shape_list(input_ids)[:2] bsz, tgt_len = shape_list(input_ids)[:2]
@ -1088,7 +1085,6 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -23,7 +23,7 @@ import tensorflow as tf
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, input_processing from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, unpack_inputs
from ...tf_utils import shape_list from ...tf_utils import shape_list
from ...utils import ( from ...utils import (
DUMMY_INPUTS, DUMMY_INPUTS,
@ -510,6 +510,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config) return cls(encoder=encoder, decoder=decoder, config=config)
@unpack_inputs
@add_start_docstrings_to_model_forward( @add_start_docstrings_to_model_forward(
VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length") VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
) )
@ -585,21 +586,16 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
if encoder_outputs is None: if encoder_outputs is None:
encoder_processing_inputs = { encoder_inputs = {
"func": self.encoder.call,
"config": self.encoder.config,
"input_ids": pixel_values, "input_ids": pixel_values,
"output_attentions": output_attentions, "output_attentions": output_attentions,
"output_hidden_states": output_hidden_states, "output_hidden_states": output_hidden_states,
"return_dict": return_dict, "return_dict": return_dict,
"training": training, "training": training,
"kwargs_call": {},
} }
# Add arguments to encoder from `kwargs_encoder` # Add arguments to encoder from `kwargs_encoder`
encoder_processing_inputs.update(kwargs_encoder) encoder_inputs.update(kwargs_encoder)
encoder_inputs = input_processing(**encoder_processing_inputs)
if "input_ids" in encoder_inputs: if "input_ids" in encoder_inputs:
encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids") encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids")
@ -639,9 +635,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
batch_size, sequence_length = shape_list(encoder_hidden_states)[:2] batch_size, sequence_length = shape_list(encoder_hidden_states)[:2]
encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32) encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32)
decoder_processing_inputs = { decoder_inputs = {
"func": self.decoder.call,
"config": self.decoder.config,
"input_ids": decoder_input_ids, "input_ids": decoder_input_ids,
"attention_mask": decoder_attention_mask, "attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states, "encoder_hidden_states": encoder_hidden_states,
@ -653,13 +647,11 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
"past_key_values": past_key_values, "past_key_values": past_key_values,
"return_dict": return_dict, "return_dict": return_dict,
"training": training, "training": training,
"kwargs_call": {},
} }
# Add arguments to decoder from `kwargs_decoder` # Add arguments to decoder from `kwargs_decoder`
decoder_processing_inputs.update(kwargs_decoder) decoder_inputs.update(kwargs_decoder)
decoder_inputs = input_processing(**decoder_processing_inputs)
decoder_outputs = self.decoder(**decoder_inputs) decoder_outputs = self.decoder(**decoder_inputs)
logits = decoder_outputs[0] logits = decoder_outputs[0]

View File

@ -486,7 +486,6 @@ class TFViTMainLayer(tf.keras.layers.Layer):
interpolate_pos_encoding: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None: if pixel_values is None:
@ -656,7 +655,6 @@ class TFViTModel(TFViTPreTrainedModel):
interpolate_pos_encoding: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -757,7 +755,6 @@ class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassification
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -647,7 +647,6 @@ class TFViTMAEMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
embedding_output, mask, ids_restore = self.embeddings( embedding_output, mask, ids_restore = self.embeddings(
pixel_values=pixel_values, training=training, noise=noise pixel_values=pixel_values, training=training, noise=noise
@ -811,7 +810,6 @@ class TFViTMAEModel(TFViTMAEPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
@ -1028,7 +1026,6 @@ class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]: ) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:

View File

@ -360,7 +360,6 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
# removed: src_enc=None, src_len=None # removed: src_enc=None, src_len=None
@ -707,7 +706,6 @@ class TFXLMModel(TFXLMPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.transformer( outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
@ -843,7 +841,6 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
transformer_outputs = self.transformer( transformer_outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
@ -917,7 +914,6 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1025,7 +1021,6 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None: if input_ids is not None:
num_choices = shape_list(input_ids)[1] num_choices = shape_list(input_ids)[1]
@ -1150,7 +1145,6 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1237,7 +1231,6 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
start_positions=None, start_positions=None,
end_positions=None, end_positions=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -597,7 +597,6 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if training and use_mems is None: if training and use_mems is None:
@ -1152,7 +1151,6 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.transformer( outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
@ -1262,7 +1260,6 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1394,7 +1391,6 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]: ) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1501,7 +1497,6 @@ class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]: ) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1623,7 +1618,6 @@ class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificatio
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]: ) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1711,7 +1705,6 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnswer
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]: ) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -653,7 +653,6 @@ class TF{{cookiecutter.camelcase_modelname}}MainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder: if not self.config.is_decoder:
@ -949,7 +948,6 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1049,7 +1047,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(TF{{cookiecutter.camelca
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1146,7 +1143,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForCausalLM(TF{{cookiecutter.camelca
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1289,7 +1285,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(TF{{cookie
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1379,7 +1374,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(TF{{cookiecutter.c
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1506,7 +1500,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(TF{{cookiecut
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1588,7 +1581,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(TF{{cookiecutte
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -2262,7 +2254,6 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
@ -2421,7 +2412,6 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
@ -2876,7 +2866,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
""" """
Returns: Returns:

View File

@ -355,7 +355,6 @@ class TFConvBertModelTest(TFModelTesterMixin, unittest.TestCase):
for model_class in self.all_model_classes: for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True inputs_dict["output_attentions"] = True
inputs_dict["use_cache"] = False
config.output_hidden_states = False config.output_hidden_states = False
model = model_class(config) model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class)) outputs = model(self._prepare_for_class(inputs_dict, model_class))

View File

@ -346,6 +346,11 @@ class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
self.assertEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer)) self.assertEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer))
self.assertNotEqual(model.get_input_embeddings().weight.shape[0], original_vocab_size) self.assertNotEqual(model.get_input_embeddings().weight.shape[0], original_vocab_size)
# This test is run in `TFT5EncoderOnlyModelTest`, where the main layer has the same inputs as the model
@unittest.skip(reason="The inputs of the Main Layer are different.")
def test_keras_save_load(self):
pass
class TFT5EncoderOnlyModelTester: class TFT5EncoderOnlyModelTester:
def __init__( def __init__(

View File

@ -573,7 +573,12 @@ class TFModelTesterMixin:
pt_model = pt_model_class(config) pt_model = pt_model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
tf_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True) tf_inputs_dict_maybe_with_labels = self._prepare_for_class(
inputs_dict,
model_class,
# Not all models accept "labels" in the forward pass (yet :) )
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
)
# Check we can load pt model in tf and vice-versa with model => model functions # Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict) tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
@ -722,7 +727,6 @@ class TFModelTesterMixin:
for model_class in self.all_model_classes: for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True inputs_dict["output_attentions"] = True
inputs_dict["use_cache"] = False
config.output_hidden_states = False config.output_hidden_states = False
model = model_class(config) model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class)) outputs = model(self._prepare_for_class(inputs_dict, model_class))
@ -944,10 +948,6 @@ class TFModelTesterMixin:
dict_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs) check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
@ -956,19 +956,25 @@ class TFModelTesterMixin:
dict_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # Not all models accept "labels" in the forward pass (yet :) )
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if "labels" in inspect.signature(model.call).parameters.keys():
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence( check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
def test_inputs_embeds(self): def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()