TF: Finalize unpack_inputs-related changes (#16499)

* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests
This commit is contained in:
Joao Gante 2022-04-04 16:37:33 +01:00 committed by GitHub
parent be9474bd35
commit dad5ca83b2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
46 changed files with 78 additions and 287 deletions

View File

@ -312,10 +312,12 @@ def booleans_processing(config, **kwargs):
final_booleans = {}
if tf.executing_eagerly():
# Pure conv models (such as ConvNext) do not have `output_attentions`
final_booleans["output_attentions"] = kwargs.get("output_attentions", None)
if final_booleans["output_attentions"] is None:
final_booleans["output_attentions"] = config.output_attentions
# Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has
# `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`)
if "output_attentions" in kwargs:
final_booleans["output_attentions"] = (
kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions
)
final_booleans["output_hidden_states"] = (
kwargs["output_hidden_states"]
if kwargs["output_hidden_states"] is not None
@ -330,7 +332,10 @@ def booleans_processing(config, **kwargs):
kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None)
)
else:
final_booleans["output_attentions"] = config.output_attentions
# Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has
# `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`)
if "output_attentions" in kwargs:
final_booleans["output_attentions"] = config.output_attentions
final_booleans["output_hidden_states"] = config.output_hidden_states
if kwargs.get("return_dict", None) not in (None, True):
@ -403,7 +408,7 @@ def input_processing(func, config, input_ids, **kwargs):
Two lists, one for the missing layers, and another one for the unexpected layers.
"""
signature = dict(inspect.signature(func).parameters)
signature.pop("kwargs", None)
has_kwargs = bool(signature.pop("kwargs", None))
signature.pop("self", None)
parameter_names = list(signature.keys())
output = {}
@ -433,12 +438,14 @@ def input_processing(func, config, input_ids, **kwargs):
elif "past_key_values" in kwargs["kwargs_call"] and "past" in parameter_names:
kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values")
if len(kwargs["kwargs_call"]) > 0:
raise ValueError(
f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
)
kwargs.pop("kwargs_call")
if has_kwargs:
output["kwargs"] = kwargs.pop("kwargs_call", {})
else:
if len(kwargs["kwargs_call"]) > 0:
raise ValueError(
f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
)
kwargs.pop("kwargs_call")
for k, v in kwargs.items():
if isinstance(v, allowed_types) or v is None:

View File

@ -551,7 +551,6 @@ class TFAlbertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
@ -785,7 +784,6 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.albert(
input_ids=input_ids,
@ -854,7 +852,6 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
sentence_order_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
Return:
@ -976,7 +973,6 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss)
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1064,7 +1060,6 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClass
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1158,7 +1153,6 @@ class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificat
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1244,7 +1238,6 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1355,7 +1348,6 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -679,7 +679,6 @@ class TFBartEncoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
"""
Args:
@ -834,7 +833,6 @@ class TFBartDecoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
Args:
@ -1273,7 +1271,6 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -737,7 +737,6 @@ class TFBertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
@ -1067,7 +1066,6 @@ class TFBertModel(TFBertPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1174,7 +1172,6 @@ class TFBertForPreTraining(TFBertPreTrainedModel, TFBertPreTrainingLoss):
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBertForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1302,7 +1299,6 @@ class TFBertForMaskedLM(TFBertPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1520,7 +1516,6 @@ class TFBertForNextSentencePrediction(TFBertPreTrainedModel, TFNextSentencePredi
return_dict: Optional[bool] = None,
next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFNextSentencePredictorOutput, Tuple[tf.Tensor]]:
r"""
Return:
@ -1628,7 +1623,6 @@ class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassific
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1723,7 +1717,6 @@ class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1857,7 +1850,6 @@ class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationL
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1949,7 +1941,6 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss)
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -662,7 +662,6 @@ class TFBlenderbotEncoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
@ -823,7 +822,6 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
@ -1276,7 +1274,6 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -667,7 +667,6 @@ class TFBlenderbotSmallEncoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
@ -827,7 +826,6 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
@ -1253,7 +1251,6 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -504,7 +504,6 @@ class TFCLIPTextTransformer(tf.keras.layers.Layer):
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
input_shape = shape_list(input_ids)
@ -593,7 +592,6 @@ class TFCLIPTextMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is None:
raise ValueError("You have to specify input_ids")
@ -632,7 +630,6 @@ class TFCLIPVisionTransformer(tf.keras.layers.Layer):
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
embedding_output = self.embeddings(pixel_values=pixel_values)
@ -683,7 +680,6 @@ class TFCLIPVisionMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None:
@ -762,7 +758,6 @@ class TFCLIPMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> tf.Tensor:
if input_ids is None:
@ -796,7 +791,6 @@ class TFCLIPMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> tf.Tensor:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
@ -826,7 +820,6 @@ class TFCLIPMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
if input_ids is None:
@ -1058,7 +1051,6 @@ class TFCLIPTextModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
@ -1153,7 +1145,6 @@ class TFCLIPVisionModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
@ -1258,7 +1249,6 @@ class TFCLIPModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> tf.Tensor:
r"""
Returns:
@ -1297,7 +1287,6 @@ class TFCLIPModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> tf.Tensor:
r"""
Returns:
@ -1345,7 +1334,6 @@ class TFCLIPModel(TFCLIPPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
r"""
Returns:

View File

@ -581,7 +581,6 @@ class TFConvBertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -751,7 +750,6 @@ class TFConvBertModel(TFConvBertPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.convbert(
input_ids=input_ids,
@ -870,7 +868,6 @@ class TFConvBertForMaskedLM(TFConvBertPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFMaskedLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -979,7 +976,6 @@ class TFConvBertForSequenceClassification(TFConvBertPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1073,7 +1069,6 @@ class TFConvBertForMultipleChoice(TFConvBertPreTrainedModel, TFMultipleChoiceLos
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFMultipleChoiceModelOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1188,7 +1183,6 @@ class TFConvBertForTokenClassification(TFConvBertPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFTokenClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1268,7 +1262,6 @@ class TFConvBertForQuestionAnswering(TFConvBertPreTrainedModel, TFQuestionAnswer
start_positions: Optional[tf.Tensor] = None,
end_positions: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFQuestionAnsweringModelOutput]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -293,7 +293,6 @@ class TFConvNextMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
@ -439,7 +438,6 @@ class TFConvNextModel(TFConvNextPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
@ -518,7 +516,6 @@ class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClas
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -268,7 +268,6 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
# If using past key value states, only the last tokens
@ -541,7 +540,6 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.transformer(
input_ids=input_ids,
@ -653,7 +651,6 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel, TFCausalLanguageModelingLoss):
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -765,7 +762,6 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -928,7 +928,6 @@ class TFDebertaMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
@ -1096,7 +1095,6 @@ class TFDebertaModel(TFDebertaPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.deberta(
input_ids=input_ids,
@ -1156,7 +1154,6 @@ class TFDebertaForMaskedLM(TFDebertaPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1242,7 +1239,6 @@ class TFDebertaForSequenceClassification(TFDebertaPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1325,7 +1321,6 @@ class TFDebertaForTokenClassification(TFDebertaPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1404,7 +1399,6 @@ class TFDebertaForQuestionAnswering(TFDebertaPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -1028,7 +1028,6 @@ class TFDebertaV2MainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
@ -1198,7 +1197,6 @@ class TFDebertaV2Model(TFDebertaV2PreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.deberta(
input_ids=input_ids,
@ -1259,7 +1257,6 @@ class TFDebertaV2ForMaskedLM(TFDebertaV2PreTrainedModel, TFMaskedLanguageModelin
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1346,7 +1343,6 @@ class TFDebertaV2ForSequenceClassification(TFDebertaV2PreTrainedModel, TFSequenc
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1430,7 +1426,6 @@ class TFDebertaV2ForTokenClassification(TFDebertaV2PreTrainedModel, TFTokenClass
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1510,7 +1505,6 @@ class TFDebertaV2ForQuestionAnswering(TFDebertaV2PreTrainedModel, TFQuestionAnsw
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -372,7 +372,6 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -543,7 +542,6 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.distilbert(
input_ids=input_ids,
@ -647,7 +645,6 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModel
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -735,7 +732,6 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSeque
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -817,7 +813,6 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenCla
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -911,7 +906,6 @@ class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoic
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1021,7 +1015,6 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAn
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -174,7 +174,6 @@ class TFDPREncoderLayer(tf.keras.layers.Layer):
output_hidden_states: bool = None,
return_dict: bool = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]:
outputs = self.bert_model(
input_ids=input_ids,
@ -235,7 +234,6 @@ class TFDPRSpanPredictorLayer(tf.keras.layers.Layer):
output_hidden_states: bool = False,
return_dict: bool = False,
training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length
n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2]
@ -294,7 +292,6 @@ class TFDPRSpanPredictor(TFPreTrainedModel):
output_hidden_states: bool = False,
return_dict: bool = False,
training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
outputs = self.encoder(
input_ids=input_ids,
@ -328,7 +325,6 @@ class TFDPREncoder(TFPreTrainedModel):
output_hidden_states: bool = False,
return_dict: bool = False,
training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
outputs = self.encoder(
input_ids=input_ids,
@ -560,7 +556,6 @@ class TFDPRContextEncoder(TFDPRPretrainedContextEncoder):
output_hidden_states=None,
return_dict=None,
training: bool = False,
**kwargs,
) -> Union[TFDPRContextEncoderOutput, Tuple[tf.Tensor, ...]]:
r"""
Return:
@ -648,7 +643,6 @@ class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder):
output_hidden_states=None,
return_dict=None,
training: bool = False,
**kwargs,
) -> Union[TFDPRQuestionEncoderOutput, Tuple[tf.Tensor, ...]]:
r"""
Return:
@ -734,7 +728,6 @@ class TFDPRReader(TFDPRPretrainedReader):
output_hidden_states: bool = None,
return_dict=None,
training: bool = False,
**kwargs,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
r"""
Return:

View File

@ -719,7 +719,6 @@ class TFElectraMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
@ -953,7 +952,6 @@ class TFElectraModel(TFElectraPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1043,7 +1041,6 @@ class TFElectraForPreTraining(TFElectraPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
Returns:
@ -1180,7 +1177,6 @@ class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1290,7 +1286,6 @@ class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1383,7 +1378,6 @@ class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1501,7 +1495,6 @@ class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1583,7 +1576,6 @@ class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -23,7 +23,7 @@ import tensorflow as tf
from ...configuration_utils import PretrainedConfig
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, input_processing
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, unpack_inputs
from ...tf_utils import shape_list
from ...utils import (
DUMMY_INPUTS,
@ -491,6 +491,7 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config)
@unpack_inputs
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
@ -559,9 +560,7 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
if encoder_outputs is None:
encoder_processing_inputs = {
"func": self.encoder.call,
"config": self.encoder.config,
encoder_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"inputs_embeds": inputs_embeds,
@ -569,14 +568,10 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
"output_hidden_states": output_hidden_states,
"return_dict": return_dict,
"training": training,
"kwargs_call": {},
}
# Add arguments to encoder from `kwargs_encoder`
for k, v in kwargs_encoder.items():
encoder_processing_inputs[k] = v
encoder_inputs = input_processing(**encoder_processing_inputs)
encoder_inputs.update(kwargs_encoder)
# Handle the case where the inputs are passed as a single dict which contains `labels`.
# The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this
@ -607,9 +602,7 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
decoder_processing_inputs = {
"func": self.decoder.call,
"config": self.decoder.config,
decoder_inputs = {
"input_ids": decoder_input_ids,
"attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states,
@ -621,14 +614,11 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
"past_key_values": past_key_values,
"return_dict": return_dict,
"training": training,
"kwargs_call": {},
}
# Add arguments to decoder from `kwargs_decoder`
for k, v in kwargs_decoder.items():
decoder_processing_inputs[k] = v
decoder_inputs.update(kwargs_decoder)
decoder_inputs = input_processing(**decoder_processing_inputs)
decoder_outputs = self.decoder(**decoder_inputs)
logits = decoder_outputs[0]

View File

@ -258,7 +258,6 @@ class TFFlaubertModel(TFFlaubertPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer(
input_ids=input_ids,
@ -490,7 +489,6 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]:
# removed: src_enc=None, src_len=None
@ -808,7 +806,6 @@ class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]:
transformer_outputs = self.transformer(

View File

@ -761,7 +761,6 @@ class TFFunnelBaseLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
@ -835,7 +834,6 @@ class TFFunnelMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -1117,7 +1115,6 @@ class TFFunnelBaseModel(TFFunnelPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
input_ids=input_ids,
@ -1165,7 +1162,6 @@ class TFFunnelModel(TFFunnelPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
@ -1293,7 +1289,6 @@ class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss)
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1369,7 +1364,6 @@ class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClass
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1455,7 +1449,6 @@ class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1566,7 +1559,6 @@ class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificat
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1645,7 +1637,6 @@ class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringL
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -367,7 +367,6 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
@ -730,7 +729,6 @@ class TFGPT2Model(TFGPT2PreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -920,7 +918,6 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1038,7 +1035,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFGPT2DoubleHeadsModelOutput, Tuple[tf.Tensor]]:
r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
@ -1195,7 +1191,6 @@ class TFGPT2ForSequenceClassification(TFGPT2PreTrainedModel, TFSequenceClassific
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -390,7 +390,6 @@ class TFGPTJMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
@ -672,7 +671,6 @@ class TFGPTJModel(TFGPTJPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
):
r"""
use_cache (`bool`, *optional*, defaults to `True`):
@ -781,7 +779,6 @@ class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
):
r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -886,7 +883,6 @@ class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassific
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
):
r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1011,7 +1007,6 @@ class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss)
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
):
r"""
start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -706,7 +706,6 @@ class TFLayoutLMMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
@ -928,7 +927,6 @@ class TFLayoutLMModel(TFLayoutLMPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
Returns:
@ -1048,7 +1046,6 @@ class TFLayoutLMForMaskedLM(TFLayoutLMPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1172,7 +1169,6 @@ class TFLayoutLMForSequenceClassification(TFLayoutLMPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1303,7 +1299,6 @@ class TFLayoutLMForTokenClassification(TFLayoutLMPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -1666,7 +1666,6 @@ class TFLEDEncoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
@ -1911,7 +1910,6 @@ class TFLEDDecoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
@ -2333,7 +2331,6 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
return_dict=None,
labels=None,
training=False,
**kwargs,
):
"""
Returns:
@ -2429,7 +2426,7 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
decoder_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:

View File

@ -1676,7 +1676,6 @@ class TFLongformerMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
@ -2023,7 +2022,6 @@ class TFLongformerModel(TFLongformerPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.longformer(
@ -2100,7 +2098,6 @@ class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModel
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -2194,7 +2191,6 @@ class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAn
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -2340,7 +2336,6 @@ class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSeque
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]:
if global_attention_mask is None and input_ids is not None:
@ -2450,7 +2445,6 @@ class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoic
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -2580,7 +2574,6 @@ class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenCla
return_dict: Optional[bool] = None,
labels: Optional[Union[np.array, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -685,7 +685,6 @@ class TFLxmertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
@ -946,7 +945,6 @@ class TFLxmertModel(TFLxmertPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.lxmert(
input_ids,
@ -1282,7 +1280,6 @@ class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -707,7 +707,6 @@ class TFMarianEncoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
@ -866,7 +865,6 @@ class TFMarianDecoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
@ -1296,7 +1294,6 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -684,7 +684,6 @@ class TFMBartEncoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
"""
Args:
@ -848,7 +847,6 @@ class TFMBartDecoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[
TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]
]:
@ -1278,7 +1276,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
decoder_head_mask: Optional[tf.Tensor] = None,
cross_attn_head_mask: Optional[tf.Tensor] = None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values: [Tuple[Tuple[tf.Tensor]]] = None,
past_key_values: Tuple[Tuple[tf.Tensor]] = None,
inputs_embeds: Optional[tf.Tensor] = None,
decoder_inputs_embeds: Optional[tf.Tensor] = None,
use_cache: Optional[bool] = None,
@ -1287,7 +1285,6 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -692,7 +692,6 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@ -928,7 +927,6 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.mobilebert(
input_ids=input_ids,
@ -993,7 +991,6 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Return:
@ -1092,7 +1089,6 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1176,7 +1172,6 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS
return_dict=None,
next_sentence_label=None,
training=False,
**kwargs,
):
r"""
Return:
@ -1287,7 +1282,6 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1381,7 +1375,6 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
start_positions=None,
end_positions=None,
training=False,
**kwargs,
):
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1498,7 +1491,6 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1626,7 +1618,6 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -497,7 +497,6 @@ class TFMPNetMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
@ -686,7 +685,6 @@ class TFMPNetModel(TFMPNetPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.mpnet(
input_ids=input_ids,
@ -803,7 +801,6 @@ class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -909,7 +906,6 @@ class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassif
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1000,7 +996,6 @@ class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss):
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1112,7 +1107,6 @@ class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificatio
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -249,7 +249,6 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if input_ids is not None and inputs_embeds is not None:
@ -522,7 +521,6 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer(
@ -586,7 +584,6 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFCausalLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -669,7 +666,6 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]:
r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
@ -813,7 +809,6 @@ class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenc
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -710,7 +710,6 @@ class TFPegasusEncoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
@ -872,7 +871,6 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
@ -1305,7 +1303,6 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
return_dict=None,
labels=None,
training=False,
**kwargs,
):
"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -660,7 +660,6 @@ class TFRemBertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
@ -959,7 +958,6 @@ class TFRemBertModel(TFRemBertPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1060,7 +1058,6 @@ class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1155,7 +1152,6 @@ class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1283,7 +1279,6 @@ class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1374,7 +1369,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1494,7 +1488,6 @@ class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1575,7 +1568,6 @@ class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -624,7 +624,6 @@ class TFRobertaMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
@ -936,7 +935,6 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1093,7 +1091,6 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1196,7 +1193,6 @@ class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1353,7 +1349,6 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1449,7 +1444,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1567,7 +1561,6 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1655,7 +1648,6 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -614,7 +614,6 @@ class TFRoFormerMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
@ -817,7 +816,6 @@ class TFRoFormerModel(TFRoFormerPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.roformer(
input_ids=input_ids,
@ -877,7 +875,6 @@ class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -953,7 +950,6 @@ class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingL
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1064,7 +1060,6 @@ class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1155,7 +1150,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1269,7 +1263,6 @@ class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1348,7 +1341,6 @@ class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnswer
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -791,7 +791,6 @@ class TFSpeech2TextEncoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
@ -957,7 +956,6 @@ class TFSpeech2TextDecoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:

View File

@ -654,7 +654,6 @@ class TFT5MainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
) -> Tuple:
if input_ids is not None and inputs_embeds is not None:
@ -1152,7 +1151,6 @@ class TFT5Model(TFT5PreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSeq2SeqModelOutput]:
r"""
Returns:
@ -1329,7 +1327,6 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSeq2SeqLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1611,6 +1608,10 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
encoder_config.use_cache = False
self.encoder = TFT5MainLayer(encoder_config, embed_tokens, name="encoder")
@property
def dummy_inputs(self):
return {"input_ids": tf.constant(DUMMY_INPUTS)}
def get_encoder(self):
return self.encoder
@ -1627,7 +1628,6 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]:
r"""
Returns:
@ -1670,6 +1670,19 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
attentions=encoder_outputs.attentions,
)
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
# Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output
def serving_output(self, output):
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None

View File

@ -770,7 +770,6 @@ class TFTapasMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
@ -980,7 +979,6 @@ class TFTapasModel(TFTapasPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
@ -1067,7 +1065,6 @@ class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1285,7 +1282,6 @@ class TFTapasForQuestionAnswering(TFTapasPreTrainedModel):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]:
r"""
table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*):
@ -1602,7 +1598,6 @@ class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassif
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):

View File

@ -550,7 +550,6 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
@ -898,7 +897,6 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.transformer(
input_ids=input_ids,
@ -979,7 +977,6 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
return_dict=None,
labels=None,
training=False,
**kwargs,
):
if input_ids is not None:
bsz, tgt_len = shape_list(input_ids)[:2]
@ -1088,7 +1085,6 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

View File

@ -23,7 +23,7 @@ import tensorflow as tf
from ...configuration_utils import PretrainedConfig
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, input_processing
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, unpack_inputs
from ...tf_utils import shape_list
from ...utils import (
DUMMY_INPUTS,
@ -510,6 +510,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config)
@unpack_inputs
@add_start_docstrings_to_model_forward(
VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
)
@ -585,21 +586,16 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
if encoder_outputs is None:
encoder_processing_inputs = {
"func": self.encoder.call,
"config": self.encoder.config,
encoder_inputs = {
"input_ids": pixel_values,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"return_dict": return_dict,
"training": training,
"kwargs_call": {},
}
# Add arguments to encoder from `kwargs_encoder`
encoder_processing_inputs.update(kwargs_encoder)
encoder_inputs = input_processing(**encoder_processing_inputs)
encoder_inputs.update(kwargs_encoder)
if "input_ids" in encoder_inputs:
encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids")
@ -639,9 +635,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
batch_size, sequence_length = shape_list(encoder_hidden_states)[:2]
encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32)
decoder_processing_inputs = {
"func": self.decoder.call,
"config": self.decoder.config,
decoder_inputs = {
"input_ids": decoder_input_ids,
"attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states,
@ -653,13 +647,11 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
"past_key_values": past_key_values,
"return_dict": return_dict,
"training": training,
"kwargs_call": {},
}
# Add arguments to decoder from `kwargs_decoder`
decoder_processing_inputs.update(kwargs_decoder)
decoder_inputs.update(kwargs_decoder)
decoder_inputs = input_processing(**decoder_processing_inputs)
decoder_outputs = self.decoder(**decoder_inputs)
logits = decoder_outputs[0]

View File

@ -486,7 +486,6 @@ class TFViTMainLayer(tf.keras.layers.Layer):
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None:
@ -656,7 +655,6 @@ class TFViTModel(TFViTPreTrainedModel):
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
@ -757,7 +755,6 @@ class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassification
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):

View File

@ -647,7 +647,6 @@ class TFViTMAEMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
embedding_output, mask, ids_restore = self.embeddings(
pixel_values=pixel_values, training=training, noise=noise
@ -811,7 +810,6 @@ class TFViTMAEModel(TFViTMAEPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
r"""
Returns:
@ -1028,7 +1026,6 @@ class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
Returns:

View File

@ -360,7 +360,6 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
# removed: src_enc=None, src_len=None
@ -707,7 +706,6 @@ class TFXLMModel(TFXLMPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.transformer(
input_ids=input_ids,
@ -843,7 +841,6 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
transformer_outputs = self.transformer(
input_ids=input_ids,
@ -917,7 +914,6 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1025,7 +1021,6 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
return_dict=None,
labels=None,
training=False,
**kwargs,
):
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
@ -1150,7 +1145,6 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1237,7 +1231,6 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
start_positions=None,
end_positions=None,
training=False,
**kwargs,
):
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -597,7 +597,6 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
if training and use_mems is None:
@ -1152,7 +1151,6 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
outputs = self.transformer(
input_ids=input_ids,
@ -1262,7 +1260,6 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1394,7 +1391,6 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassif
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1501,7 +1497,6 @@ class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1623,7 +1618,6 @@ class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificatio
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1711,7 +1705,6 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnswer
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):

View File

@ -653,7 +653,6 @@ class TF{{cookiecutter.camelcase_modelname}}MainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
@ -949,7 +948,6 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1049,7 +1047,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(TF{{cookiecutter.camelca
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1146,7 +1143,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForCausalLM(TF{{cookiecutter.camelca
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -1289,7 +1285,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(TF{{cookie
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1379,7 +1374,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(TF{{cookiecutter.c
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -1506,7 +1500,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(TF{{cookiecut
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
@ -1588,7 +1581,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(TF{{cookiecutte
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
@ -2262,7 +2254,6 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
@ -2421,7 +2412,6 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
@ -2876,7 +2866,6 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
return_dict=None,
labels=None,
training=False,
**kwargs,
):
"""
Returns:

View File

@ -355,7 +355,6 @@ class TFConvBertModelTest(TFModelTesterMixin, unittest.TestCase):
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["use_cache"] = False
config.output_hidden_states = False
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))

View File

@ -346,6 +346,11 @@ class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
self.assertEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer))
self.assertNotEqual(model.get_input_embeddings().weight.shape[0], original_vocab_size)
# This test is run in `TFT5EncoderOnlyModelTest`, where the main layer has the same inputs as the model
@unittest.skip(reason="The inputs of the Main Layer are different.")
def test_keras_save_load(self):
pass
class TFT5EncoderOnlyModelTester:
def __init__(

View File

@ -573,7 +573,12 @@ class TFModelTesterMixin:
pt_model = pt_model_class(config)
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
tf_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
tf_inputs_dict_maybe_with_labels = self._prepare_for_class(
inputs_dict,
model_class,
# Not all models accept "labels" in the forward pass (yet :) )
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
@ -722,7 +727,6 @@ class TFModelTesterMixin:
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["use_cache"] = False
config.output_hidden_states = False
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
@ -944,10 +948,6 @@ class TFModelTesterMixin:
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
@ -956,19 +956,25 @@ class TFModelTesterMixin:
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
# Not all models accept "labels" in the forward pass (yet :) )
if "labels" in inspect.signature(model.call).parameters.keys():
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()