Add Optional to remaining types (#37808)

More Optional typing

Signed-off-by: cyy <cyyever@outlook.com>
This commit is contained in:
Yuanyuan Chen 2025-04-28 21:20:45 +08:00 committed by GitHub
parent 1a9188a54e
commit da4ff2a5f5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
206 changed files with 553 additions and 531 deletions

View File

@ -19,6 +19,7 @@ import time
from json import JSONDecodeError from json import JSONDecodeError
from logging import getLogger from logging import getLogger
from pathlib import Path from pathlib import Path
from typing import Optional
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
@ -54,7 +55,7 @@ def eval_data_dir(
task="summarization", task="summarization",
local_rank=None, local_rank=None,
num_return_sequences=1, num_return_sequences=1,
dataset_kwargs: dict = None, dataset_kwargs: Optional[dict] = None,
prefix="", prefix="",
**generate_kwargs, **generate_kwargs,
) -> dict: ) -> dict:

View File

@ -74,7 +74,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: dict[str, int] = None, size: Optional[dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
@ -159,7 +159,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
image_mean: Optional[Union[float, list[float]]] = None, image_mean: Optional[Union[float, list[float]]] = None,
image_std: Optional[Union[float, list[float]]] = None, image_std: Optional[Union[float, list[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None, return_tensors: Optional[Union[str, TensorType]] = None,
do_convert_rgb: bool = None, do_convert_rgb: Optional[bool] = None,
data_format: ChannelDimension = ChannelDimension.FIRST, data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image: ) -> PIL.Image.Image:

View File

@ -359,7 +359,7 @@ class DynamicCache(Cache):
``` ```
""" """
def __init__(self, _distributed_cache_data: Iterable = None) -> None: def __init__(self, _distributed_cache_data: Optional[Iterable] = None) -> None:
super().__init__() super().__init__()
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
self.key_cache: List[torch.Tensor] = [] self.key_cache: List[torch.Tensor] = []

View File

@ -512,7 +512,7 @@ def duplicate_module(
new_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns,
dest_file: Optional[str] = None, dest_file: Optional[str] = None,
add_copied_from: bool = True, add_copied_from: bool = True,
attrs_to_remove: List[str] = None, attrs_to_remove: Optional[List[str]] = None,
): ):
""" """
Create a new module from an existing one and adapting all function and classes names from old patterns to new ones. Create a new module from an existing one and adapting all function and classes names from old patterns to new ones.

View File

@ -19,6 +19,7 @@ allow to make our dependency on SentencePiece optional.
""" """
import warnings import warnings
from typing import Optional
from packaging import version from packaging import version
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors
@ -326,7 +327,9 @@ class OpenAIGPTConverter(Converter):
class GPT2Converter(Converter): class GPT2Converter(Converter):
def converted(self, vocab: dict[str, int] = None, merges: list[tuple[str, str]] = None) -> Tokenizer: def converted(
self, vocab: Optional[dict[str, int]] = None, merges: Optional[list[tuple[str, str]]] = None
) -> Tokenizer:
if not vocab: if not vocab:
vocab = self.original_tokenizer.encoder vocab = self.original_tokenizer.encoder
if not merges: if not merges:
@ -395,7 +398,9 @@ class HerbertConverter(Converter):
class Qwen2Converter(Converter): class Qwen2Converter(Converter):
def converted(self, vocab: dict[str, int] = None, merges: list[tuple[str, str]] = None) -> Tokenizer: def converted(
self, vocab: Optional[dict[str, int]] = None, merges: Optional[list[tuple[str, str]]] = None
) -> Tokenizer:
if not vocab: if not vocab:
vocab = self.original_tokenizer.encoder vocab = self.original_tokenizer.encoder
if not merges: if not merges:

View File

@ -209,7 +209,7 @@ def convert_to_size_dict(
def get_size_dict( def get_size_dict(
size: Union[int, Iterable[int], dict[str, int]] = None, size: Optional[Union[int, Iterable[int], dict[str, int]]] = None,
max_size: Optional[int] = None, max_size: Optional[int] = None,
height_width_order: bool = True, height_width_order: bool = True,
default_to_square: bool = True, default_to_square: bool = True,

View File

@ -755,7 +755,7 @@ class BaseImageProcessorFast(BaseImageProcessor):
class SemanticSegmentationMixin: class SemanticSegmentationMixin:
def post_process_semantic_segmentation(self, outputs, target_sizes: list[tuple] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[list[tuple]] = None):
""" """
Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.

View File

@ -79,7 +79,7 @@ class PeftAdapterMixin:
max_memory: Optional[str] = None, max_memory: Optional[str] = None,
offload_folder: Optional[str] = None, offload_folder: Optional[str] = None,
offload_index: Optional[int] = None, offload_index: Optional[int] = None,
peft_config: Dict[str, Any] = None, peft_config: Optional[Dict[str, Any]] = None,
adapter_state_dict: Optional[Dict[str, "torch.Tensor"]] = None, adapter_state_dict: Optional[Dict[str, "torch.Tensor"]] = None,
low_cpu_mem_usage: bool = False, low_cpu_mem_usage: bool = False,
is_trainable: bool = False, is_trainable: bool = False,

View File

@ -558,7 +558,7 @@ class FlaxAlbertPreTrainedModel(FlaxPreTrainedModel):
attention_mask=None, attention_mask=None,
token_type_ids=None, token_type_ids=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -18,7 +18,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from typing import Dict from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation from ...modeling_rope_utils import rope_config_validation
@ -268,7 +268,7 @@ class AriaConfig(PretrainedConfig):
vision_config=None, vision_config=None,
vision_feature_layer: int = -1, vision_feature_layer: int = -1,
text_config: AriaTextConfig = None, text_config: AriaTextConfig = None,
projector_patch_to_query_dict: Dict = None, projector_patch_to_query_dict: Optional[Dict] = None,
image_token_index: int = 9, image_token_index: int = 9,
initializer_range: float = 0.02, initializer_range: float = 0.02,
**kwargs, **kwargs,

View File

@ -124,8 +124,8 @@ class AriaImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
image_mean: List[float] = None, image_mean: Optional[List[float]] = None,
image_std: List[float] = None, image_std: Optional[List[float]] = None,
max_image_size: int = 980, max_image_size: int = 980,
min_image_size: int = 336, min_image_size: int = 336,
split_resolutions: Optional[List[Tuple[int, int]]] = None, split_resolutions: Optional[List[Tuple[int, int]]] = None,

View File

@ -276,7 +276,7 @@ class AriaConfig(PretrainedConfig):
vision_config=None, vision_config=None,
vision_feature_layer: int = -1, vision_feature_layer: int = -1,
text_config: AriaTextConfig = None, text_config: AriaTextConfig = None,
projector_patch_to_query_dict: Dict = None, projector_patch_to_query_dict: Optional[Dict] = None,
image_token_index: int = 9, image_token_index: int = 9,
initializer_range: float = 0.02, initializer_range: float = 0.02,
**kwargs, **kwargs,
@ -514,8 +514,8 @@ class AriaImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
image_mean: List[float] = None, image_mean: Optional[List[float]] = None,
image_std: List[float] = None, image_std: Optional[List[float]] = None,
max_image_size: int = 980, max_image_size: int = 980,
min_image_size: int = 336, min_image_size: int = 336,
split_resolutions: Optional[List[Tuple[int, int]]] = None, split_resolutions: Optional[List[Tuple[int, int]]] = None,

View File

@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
"""BARK model configuration""" """BARK model configuration"""
from typing import Dict from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings, logging from ...utils import add_start_docstrings, logging
@ -243,10 +243,10 @@ class BarkConfig(PretrainedConfig):
def __init__( def __init__(
self, self,
semantic_config: Dict = None, semantic_config: Optional[Dict] = None,
coarse_acoustics_config: Dict = None, coarse_acoustics_config: Optional[Dict] = None,
fine_acoustics_config: Dict = None, fine_acoustics_config: Optional[Dict] = None,
codec_config: Dict = None, codec_config: Optional[Dict] = None,
initializer_range=0.02, initializer_range=0.02,
**kwargs, **kwargs,
): ):

View File

@ -15,7 +15,7 @@
"""BARK model generation configuration""" """BARK model generation configuration"""
import copy import copy
from typing import Dict from typing import Dict, Optional
from ...generation.configuration_utils import GenerationConfig from ...generation.configuration_utils import GenerationConfig
from ...utils import logging from ...utils import logging
@ -245,9 +245,9 @@ class BarkGenerationConfig(GenerationConfig):
def __init__( def __init__(
self, self,
semantic_config: Dict = None, semantic_config: Optional[Dict] = None,
coarse_acoustics_config: Dict = None, coarse_acoustics_config: Optional[Dict] = None,
fine_acoustics_config: Dict = None, fine_acoustics_config: Optional[Dict] = None,
sample_rate=24_000, sample_rate=24_000,
codebook_size=1024, codebook_size=1024,
**kwargs, **kwargs,

View File

@ -1007,7 +1007,7 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -1068,12 +1068,12 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -1186,7 +1186,7 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
@ -1335,12 +1335,12 @@ class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel):
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -1807,8 +1807,8 @@ class FlaxBartDecoderPreTrainedModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

View File

@ -106,10 +106,10 @@ class BeitImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True, do_rescale: bool = True,
do_normalize: bool = True, do_normalize: bool = True,
@ -194,10 +194,10 @@ class BeitImageProcessor(BaseImageProcessor):
image: ImageInput, image: ImageInput,
do_reduce_labels: Optional[bool] = None, do_reduce_labels: Optional[bool] = None,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,
@ -226,10 +226,10 @@ class BeitImageProcessor(BaseImageProcessor):
self, self,
image: ImageInput, image: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,
@ -271,10 +271,10 @@ class BeitImageProcessor(BaseImageProcessor):
self, self,
segmentation_map: ImageInput, segmentation_map: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_reduce_labels: Optional[bool] = None, do_reduce_labels: Optional[bool] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None,
): ):
@ -320,10 +320,10 @@ class BeitImageProcessor(BaseImageProcessor):
images: ImageInput, images: ImageInput,
segmentation_maps: Optional[ImageInput] = None, segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,
@ -470,7 +470,7 @@ class BeitImageProcessor(BaseImageProcessor):
return BatchFeature(data=data, tensor_type=return_tensors) return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[List[Tuple]] = None):
""" """
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.

View File

@ -634,7 +634,7 @@ class FlaxBeitPreTrainedModel(FlaxPreTrainedModel):
self, self,
pixel_values, pixel_values,
bool_masked_pos=None, bool_masked_pos=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -864,13 +864,13 @@ class FlaxBertPreTrainedModel(FlaxPreTrainedModel):
head_mask=None, head_mask=None,
encoder_hidden_states=None, encoder_hidden_states=None,
encoder_attention_mask=None, encoder_attention_mask=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
): ):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (

View File

@ -1725,14 +1725,14 @@ class FlaxBigBirdPreTrainedModel(FlaxPreTrainedModel):
head_mask=None, head_mask=None,
encoder_hidden_states=None, encoder_hidden_states=None,
encoder_attention_mask=None, encoder_attention_mask=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: Optional[jax.random.PRNGKey] = None, dropout_rng: Optional[jax.random.PRNGKey] = None,
indices_rng: Optional[jax.random.PRNGKey] = None, indices_rng: Optional[jax.random.PRNGKey] = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
): ):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
@ -2442,7 +2442,7 @@ class FlaxBigBirdForQuestionAnswering(FlaxBigBirdPreTrainedModel):
position_ids=None, position_ids=None,
head_mask=None, head_mask=None,
question_lengths=None, question_lengths=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: Optional[jax.random.PRNGKey] = None, dropout_rng: Optional[jax.random.PRNGKey] = None,
indices_rng: Optional[jax.random.PRNGKey] = None, indices_rng: Optional[jax.random.PRNGKey] = None,
train: bool = False, train: bool = False,

View File

@ -92,10 +92,10 @@ class BitImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
@ -177,7 +177,7 @@ class BitImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Optional[int] = None, crop_size: Optional[int] = None,

View File

@ -980,7 +980,7 @@ class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -1043,12 +1043,12 @@ class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -1161,7 +1161,7 @@ class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
@ -1311,12 +1311,12 @@ class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel):
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""

View File

@ -977,7 +977,7 @@ class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -1040,12 +1040,12 @@ class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel):
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -1157,7 +1157,7 @@ class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
@ -1308,12 +1308,12 @@ class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedM
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
deterministic: bool = True, deterministic: bool = True,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""

View File

@ -83,7 +83,7 @@ class BlipImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,

View File

@ -148,7 +148,7 @@ class BloomOnnxConfig(OnnxConfigWithPast):
self, self,
config: PretrainedConfig, config: PretrainedConfig,
task: str = "default", task: str = "default",
patching_specs: List[PatchingSpec] = None, patching_specs: Optional[List[PatchingSpec]] = None,
use_past: bool = False, use_past: bool = False,
): ):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)

View File

@ -463,8 +463,8 @@ class FlaxBloomPreTrainedModel(FlaxPreTrainedModel):
self, self,
input_ids, input_ids,
attention_mask=None, attention_mask=None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -172,7 +172,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
size_divisor: int = 32, size_divisor: int = 32,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True, do_rescale: bool = True,
@ -181,7 +181,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
image_mean: Optional[Union[float, List[float]]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_pad: bool = True, do_pad: bool = True,
**kwargs, **kwargs,
) -> None: ) -> None:
@ -385,7 +385,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
image_std: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None, do_pad: Optional[bool] = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
return_tensors: Optional[Union[str, TensorType]] = None, return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST, data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None,

View File

@ -1581,7 +1581,7 @@ class CamembertForCausalLM(CamembertPreTrainedModel, GenerationMixin):
encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,

View File

@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
"""chameleon model configuration""" """chameleon model configuration"""
from typing import List from typing import List, Optional
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...utils import logging from ...utils import logging
@ -75,7 +75,7 @@ class ChameleonVQVAEConfig(PretrainedConfig):
base_channels: int = 128, base_channels: int = 128,
channel_multiplier: List[int] = [1, 1, 2, 2, 4], channel_multiplier: List[int] = [1, 1, 2, 2, 4],
num_res_blocks: int = 2, num_res_blocks: int = 2,
attn_resolutions: List[int] = None, attn_resolutions: Optional[List[int]] = None,
dropout: float = 0.0, dropout: float = 0.0,
attn_type: str = "vanilla", attn_type: str = "vanilla",
initializer_range=0.02, initializer_range=0.02,

View File

@ -88,10 +88,10 @@ class ChameleonImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PIL.Image.LANCZOS, resample: PILImageResampling = PIL.Image.LANCZOS,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 0.0078, rescale_factor: Union[int, float] = 0.0078,
do_normalize: bool = True, do_normalize: bool = True,
@ -173,7 +173,7 @@ class ChameleonImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Optional[int] = None, crop_size: Optional[int] = None,

View File

@ -96,10 +96,10 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
@ -170,7 +170,7 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Optional[int] = None, crop_size: Optional[int] = None,

View File

@ -95,10 +95,10 @@ class CLIPImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
@ -203,7 +203,7 @@ class CLIPImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Optional[int] = None, crop_size: Optional[int] = None,

View File

@ -667,7 +667,7 @@ class FlaxCLIPTextPreTrainedModel(FlaxPreTrainedModel):
input_ids, input_ids,
attention_mask=None, attention_mask=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
@ -745,7 +745,7 @@ class FlaxCLIPVisionPreTrainedModel(FlaxPreTrainedModel):
def __call__( def __call__(
self, self,
pixel_values, pixel_values,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
@ -823,7 +823,7 @@ class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel):
pixel_values, pixel_values,
attention_mask=None, attention_mask=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
@ -867,7 +867,7 @@ class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel):
input_ids, input_ids,
attention_mask=None, attention_mask=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train=False, train=False,
): ):
@ -930,7 +930,7 @@ class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel):
) )
def get_image_features( def get_image_features(
self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False self, pixel_values, params: Optional[dict] = None, dropout_rng: jax.random.PRNGKey = None, train=False
): ):
r""" r"""
Args: Args:

View File

@ -151,7 +151,7 @@ class CodeGenOnnxConfig(OnnxConfigWithPast):
self, self,
config: PretrainedConfig, config: PretrainedConfig,
task: str = "default", task: str = "default",
patching_specs: List[PatchingSpec] = None, patching_specs: Optional[List[PatchingSpec]] = None,
use_past: bool = False, use_past: bool = False,
): ):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)

View File

@ -749,7 +749,7 @@ def compute_segments(
mask_threshold: float = 0.5, mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8, overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None, label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None, target_size: Optional[Tuple[int, int]] = None,
): ):
height = mask_probs.shape[1] if target_size is None else target_size[0] height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1] width = mask_probs.shape[2] if target_size is None else target_size[1]
@ -863,13 +863,13 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
self, self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
image_mean: Union[float, List[float]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Union[float, List[float]] = None, image_std: Optional[Union[float, List[float]]] = None,
do_convert_annotations: Optional[bool] = None, do_convert_annotations: Optional[bool] = None,
do_pad: bool = True, do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None, pad_size: Optional[Dict[str, int]] = None,
@ -1633,7 +1633,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
return results return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation with Detr->ConditionalDetr # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation with Detr->ConditionalDetr
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None):
""" """
Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.

View File

@ -850,7 +850,7 @@ class ConditionalDetrImageProcessorFast(BaseImageProcessorFast):
return results return results
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None):
""" """
Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.

View File

@ -91,7 +91,7 @@ class ConvNextImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
crop_pct: Optional[float] = None, crop_pct: Optional[float] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
@ -190,7 +190,7 @@ class ConvNextImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
crop_pct: Optional[float] = None, crop_pct: Optional[float] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,

View File

@ -222,7 +222,9 @@ class CpmAntTokenizer(PreTrainedTokenizer):
index += 1 index += 1
return (vocab_file,) return (vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]: def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
""" """
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A CPMAnt sequence has the following format: adding special tokens. A CPMAnt sequence has the following format:

View File

@ -19,6 +19,7 @@ import gc
import json import json
import re import re
from pathlib import Path from pathlib import Path
from typing import Optional
import torch import torch
from huggingface_hub import hf_hub_download from huggingface_hub import hf_hub_download
@ -87,7 +88,7 @@ ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
# Copied from transformers.models.mllama.convert_mllama_weights_to_hf.convert_old_keys_to_new_keys # Copied from transformers.models.mllama.convert_mllama_weights_to_hf.convert_old_keys_to_new_keys
def convert_old_keys_to_new_keys(state_dict_keys: dict = None): def convert_old_keys_to_new_keys(state_dict_keys: Optional[dict] = None):
""" """
This function should be applied only once, on the concatenated keys to efficiently rename using This function should be applied only once, on the concatenated keys to efficiently rename using
the key mappings. the key mappings.

View File

@ -89,7 +89,7 @@ class DbrxFFNConfig(PretrainedConfig):
def __init__( def __init__(
self, self,
ffn_act_fn: dict = None, ffn_act_fn: Optional[dict] = None,
ffn_hidden_size: int = 3584, ffn_hidden_size: int = 3584,
moe_num_experts: int = 4, moe_num_experts: int = 4,
moe_top_k: int = 1, moe_top_k: int = 1,

View File

@ -747,7 +747,7 @@ def compute_segments(
mask_threshold: float = 0.5, mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8, overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None, label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None, target_size: Optional[Tuple[int, int]] = None,
): ):
height = mask_probs.shape[1] if target_size is None else target_size[0] height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1] width = mask_probs.shape[2] if target_size is None else target_size[1]
@ -861,13 +861,13 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
self, self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
image_mean: Union[float, List[float]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Union[float, List[float]] = None, image_std: Optional[Union[float, List[float]]] = None,
do_convert_annotations: Optional[bool] = None, do_convert_annotations: Optional[bool] = None,
do_pad: bool = True, do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None, pad_size: Optional[Dict[str, int]] = None,

View File

@ -84,10 +84,10 @@ class DeiTImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PIL.Image.BICUBIC, resample: PILImageResampling = PIL.Image.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True, do_rescale: bool = True,
do_normalize: bool = True, do_normalize: bool = True,
@ -166,10 +166,10 @@ class DeiTImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample=None, resample=None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,

View File

@ -553,13 +553,13 @@ class DetaImageProcessor(BaseImageProcessor):
self, self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
image_mean: Union[float, List[float]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Union[float, List[float]] = None, image_std: Optional[Union[float, List[float]]] = None,
do_convert_annotations: bool = True, do_convert_annotations: bool = True,
do_pad: bool = True, do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None, pad_size: Optional[Dict[str, int]] = None,

View File

@ -91,7 +91,7 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
do_center_crop: bool = True, do_center_crop: bool = True,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_normalize: bool = True, do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None,
@ -179,7 +179,7 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Optional[int] = None, crop_size: Optional[int] = None,

View File

@ -1684,7 +1684,7 @@ class MegaForCausalLM(MegaPreTrainedModel):
encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,

View File

@ -497,7 +497,7 @@ class TapexTokenizer(PreTrainedTokenizer):
self, self,
table: Union["pd.DataFrame", List["pd.DataFrame"]] = None, table: Union["pd.DataFrame", List["pd.DataFrame"]] = None,
query: Optional[Union[TextInput, List[TextInput]]] = None, query: Optional[Union[TextInput, List[TextInput]]] = None,
answer: Union[str, List[str]] = None, answer: Optional[Union[str, List[str]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None, truncation: Union[bool, str, TruncationStrategy] = None,
@ -574,7 +574,7 @@ class TapexTokenizer(PreTrainedTokenizer):
self, self,
table: Union["pd.DataFrame", List["pd.DataFrame"]], table: Union["pd.DataFrame", List["pd.DataFrame"]],
query: Optional[Union[TextInput, List[TextInput]]] = None, query: Optional[Union[TextInput, List[TextInput]]] = None,
answer: Union[str, List[str]] = None, answer: Optional[Union[str, List[str]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None, truncation: Union[bool, str, TruncationStrategy] = None,
@ -662,10 +662,10 @@ class TapexTokenizer(PreTrainedTokenizer):
self, self,
table: Union["pd.DataFrame", List["pd.DataFrame"]], table: Union["pd.DataFrame", List["pd.DataFrame"]],
query: Optional[List[TextInput]] = None, query: Optional[List[TextInput]] = None,
answer: List[str] = None, answer: Optional[List[str]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None, truncation: Optional[Union[bool, str]] = None,
max_length: Optional[int] = None, max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None, pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None, return_tensors: Optional[Union[str, TensorType]] = None,
@ -884,7 +884,7 @@ class TapexTokenizer(PreTrainedTokenizer):
answer: Optional[str] = None, answer: Optional[str] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None, truncation: Optional[Union[bool, str]] = None,
max_length: Optional[int] = None, max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None, pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None, return_tensors: Optional[Union[str, TensorType]] = None,
@ -1053,7 +1053,7 @@ class TapexTokenizer(PreTrainedTokenizer):
answer: List[str], answer: List[str],
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None, truncation: Optional[Union[bool, str]] = None,
max_length: Optional[int] = None, max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None, pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None, return_tensors: Optional[Union[str, TensorType]] = None,
@ -1197,7 +1197,7 @@ class TapexTokenizer(PreTrainedTokenizer):
answer: str, answer: str,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None, truncation: Optional[Union[bool, str]] = None,
max_length: Optional[int] = None, max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None, pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None, return_tensors: Optional[Union[str, TensorType]] = None,

View File

@ -121,12 +121,12 @@ class TvltImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
patch_size: List[int] = [16, 16], patch_size: List[int] = [16, 16],
num_frames: int = 8, num_frames: int = 8,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
@ -221,10 +221,10 @@ class TvltImageProcessor(BaseImageProcessor):
self, self,
image: ImageInput, image: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,
@ -278,12 +278,12 @@ class TvltImageProcessor(BaseImageProcessor):
self, self,
videos: ImageInput, videos: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
patch_size: List[int] = None, patch_size: Optional[List[int]] = None,
num_frames: Optional[int] = None, num_frames: Optional[int] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,

View File

@ -93,10 +93,10 @@ class ViTHybridImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
@ -193,7 +193,7 @@ class ViTHybridImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Optional[int] = None, crop_size: Optional[int] = None,

View File

@ -15,6 +15,7 @@
import argparse import argparse
import gc import gc
import os import os
from typing import Optional
import regex as re import regex as re
import torch import torch
@ -93,7 +94,7 @@ ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
# fmt: on # fmt: on
def convert_old_keys_to_new_keys(state_dict_keys: dict = None): def convert_old_keys_to_new_keys(state_dict_keys: Optional[dict] = None):
output_dict = {} output_dict = {}
if state_dict_keys is not None: if state_dict_keys is not None:
old_text = "\n".join(state_dict_keys) old_text = "\n".join(state_dict_keys)

View File

@ -732,7 +732,7 @@ def compute_segments(
mask_threshold: float = 0.5, mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8, overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None, label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None, target_size: Optional[Tuple[int, int]] = None,
): ):
height = mask_probs.shape[1] if target_size is None else target_size[0] height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1] width = mask_probs.shape[2] if target_size is None else target_size[1]
@ -845,13 +845,13 @@ class DetrImageProcessor(BaseImageProcessor):
self, self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
image_mean: Union[float, List[float]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Union[float, List[float]] = None, image_std: Optional[Union[float, List[float]]] = None,
do_convert_annotations: Optional[bool] = None, do_convert_annotations: Optional[bool] = None,
do_pad: bool = True, do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None, pad_size: Optional[Dict[str, int]] = None,
@ -1824,7 +1824,7 @@ class DetrImageProcessor(BaseImageProcessor):
return results return results
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None):
""" """
Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.

View File

@ -1088,7 +1088,7 @@ class DetrImageProcessorFast(BaseImageProcessorFast):
return results return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None):
""" """
Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.

View File

@ -592,7 +592,7 @@ class FlaxDinov2PreTrainedModel(FlaxPreTrainedModel):
def __call__( def __call__(
self, self,
pixel_values, pixel_values,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -459,7 +459,7 @@ class FlaxDistilBertPreTrainedModel(FlaxPreTrainedModel):
input_ids, input_ids,
attention_mask=None, attention_mask=None,
head_mask=None, head_mask=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -94,7 +94,7 @@ class DonutImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_thumbnail: bool = True, do_thumbnail: bool = True,
do_align_long_axis: bool = False, do_align_long_axis: bool = False,
@ -313,7 +313,7 @@ class DonutImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_thumbnail: Optional[bool] = None, do_thumbnail: Optional[bool] = None,
do_align_long_axis: Optional[bool] = None, do_align_long_axis: Optional[bool] = None,

View File

@ -154,7 +154,7 @@ class DPTImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
keep_aspect_ratio: bool = False, keep_aspect_ratio: bool = False,
ensure_multiple_of: int = 1, ensure_multiple_of: int = 1,
@ -299,7 +299,7 @@ class DPTImageProcessor(BaseImageProcessor):
image: ImageInput, image: ImageInput,
do_reduce_labels: Optional[bool] = None, do_reduce_labels: Optional[bool] = None,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
keep_aspect_ratio: Optional[bool] = None, keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None, ensure_multiple_of: Optional[int] = None,
@ -340,7 +340,7 @@ class DPTImageProcessor(BaseImageProcessor):
self, self,
image: ImageInput, image: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
keep_aspect_ratio: Optional[bool] = None, keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None, ensure_multiple_of: Optional[int] = None,
@ -391,7 +391,7 @@ class DPTImageProcessor(BaseImageProcessor):
self, self,
segmentation_map: ImageInput, segmentation_map: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
keep_aspect_ratio: Optional[bool] = None, keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None, ensure_multiple_of: Optional[int] = None,
@ -592,7 +592,7 @@ class DPTImageProcessor(BaseImageProcessor):
return BatchFeature(data=data, tensor_type=return_tensors) return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->DPT # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->DPT
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[List[Tuple]] = None):
""" """
Converts the output of [`DPTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`DPTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.

View File

@ -87,10 +87,10 @@ class EfficientNetImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PIL.Image.NEAREST, resample: PILImageResampling = PIL.Image.NEAREST,
do_center_crop: bool = False, do_center_crop: bool = False,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
rescale_offset: bool = False, rescale_offset: bool = False,
do_rescale: bool = True, do_rescale: bool = True,
@ -213,10 +213,10 @@ class EfficientNetImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample=None, resample=None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
rescale_offset: Optional[bool] = None, rescale_offset: Optional[bool] = None,

View File

@ -777,13 +777,13 @@ class FlaxElectraPreTrainedModel(FlaxPreTrainedModel):
head_mask=None, head_mask=None,
encoder_hidden_states=None, encoder_hidden_states=None,
encoder_attention_mask=None, encoder_attention_mask=None,
params: dict = None, params: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
): ):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (

View File

@ -304,7 +304,7 @@ class Emu3Config(PretrainedConfig):
self, self,
vq_config: Union[Dict, Emu3VQVAEConfig] = None, vq_config: Union[Dict, Emu3VQVAEConfig] = None,
text_config: Union[Dict, Emu3TextConfig] = None, text_config: Union[Dict, Emu3TextConfig] = None,
vocabulary_map: Dict[int, int] = None, vocabulary_map: Optional[Dict[int, int]] = None,
**kwargs, **kwargs,
): ):
if vq_config is None: if vq_config is None:

View File

@ -309,7 +309,7 @@ class Emu3ImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,

View File

@ -550,7 +550,7 @@ class EncoderDecoderModel(PreTrainedModel, GenerationMixin):
decoder_input_ids: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None,

View File

@ -436,7 +436,7 @@ class FlaxEncoderDecoderModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -508,12 +508,12 @@ class FlaxEncoderDecoderModel(FlaxPreTrainedModel):
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""
@ -638,7 +638,7 @@ class FlaxEncoderDecoderModel(FlaxPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
train: bool = False, train: bool = False,
params: dict = None, params: Optional[dict] = None,
dropout_rng: PRNGKey = None, dropout_rng: PRNGKey = None,
): ):
r""" r"""

View File

@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
"""FastSpeech2Conformer model configuration""" """FastSpeech2Conformer model configuration"""
from typing import Dict from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...utils import logging from ...utils import logging
@ -459,8 +459,8 @@ class FastSpeech2ConformerWithHifiGanConfig(PretrainedConfig):
def __init__( def __init__(
self, self,
model_config: Dict = None, model_config: Optional[Dict] = None,
vocoder_config: Dict = None, vocoder_config: Optional[Dict] = None,
**kwargs, **kwargs,
): ):
if model_config is None: if model_config is None:

View File

@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
"""FLAVA model configurations""" """FLAVA model configurations"""
from typing import Any, Dict from typing import Any, Dict, Optional
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...utils import logging from ...utils import logging
@ -472,10 +472,10 @@ class FlavaConfig(PretrainedConfig):
def __init__( def __init__(
self, self,
image_config: Dict[str, Any] = None, image_config: Optional[Dict[str, Any]] = None,
text_config: Dict[str, Any] = None, text_config: Optional[Dict[str, Any]] = None,
multimodal_config: Dict[str, Any] = None, multimodal_config: Optional[Dict[str, Any]] = None,
image_codebook_config: Dict[str, Any] = None, image_codebook_config: Optional[Dict[str, Any]] = None,
hidden_size: int = 768, hidden_size: int = 768,
layer_norm_eps: float = 1e-12, layer_norm_eps: float = 1e-12,
projection_dim: int = 768, projection_dim: int = 768,

View File

@ -228,10 +228,10 @@ class FlavaImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
@ -392,10 +392,10 @@ class FlavaImageProcessor(BaseImageProcessor):
self, self,
image: ImageInput, image: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,
@ -457,7 +457,7 @@ class FlavaImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None, do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None, crop_size: Optional[Dict[str, int]] = None,

View File

@ -537,7 +537,7 @@ class FuyuImageProcessor(BaseImageProcessor):
} }
return FuyuBatchFeature(data=data, tensor_type=return_tensors) return FuyuBatchFeature(data=data, tensor_type=return_tensors)
def get_num_patches(self, image_height: int, image_width: int, patch_size: Dict[str, int] = None) -> int: def get_num_patches(self, image_height: int, image_width: int, patch_size: Optional[Dict[str, int]] = None) -> int:
""" """
Calculate number of patches required to encode an image. Calculate number of patches required to encode an image.

View File

@ -485,8 +485,8 @@ class FlaxGemmaPreTrainedModel(FlaxPreTrainedModel):
input_ids, input_ids,
attention_mask=None, attention_mask=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -95,7 +95,7 @@ class Gemma3ImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
@ -241,7 +241,7 @@ class Gemma3ImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,

View File

@ -61,7 +61,7 @@ ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
CONTEXT_LENGTH = 8000 CONTEXT_LENGTH = 8000
def convert_old_keys_to_new_keys(state_dict_keys: dict = None): def convert_old_keys_to_new_keys(state_dict_keys: Optional[dict] = None):
""" """
This function should be applied only once, on the concatenated keys to efficiently rename using This function should be applied only once, on the concatenated keys to efficiently rename using
the key mappings. the key mappings.

View File

@ -172,7 +172,7 @@ class GotOcr2ImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
crop_to_patches: bool = False, crop_to_patches: bool = False,
min_patches: int = 1, min_patches: int = 1,
max_patches: int = 12, max_patches: int = 12,
@ -419,7 +419,7 @@ class GotOcr2ImageProcessor(BaseImageProcessor):
min_patches: int, min_patches: int,
max_patches: int, max_patches: int,
use_thumbnail: bool = True, use_thumbnail: bool = True,
patch_size: Union[Tuple, int, dict] = None, patch_size: Optional[Union[Tuple, int, dict]] = None,
data_format: ChannelDimension = None, data_format: ChannelDimension = None,
): ):
""" """

View File

@ -114,7 +114,7 @@ class GotOcr2ImageProcessorFast(BaseImageProcessorFast):
min_patches: int, min_patches: int,
max_patches: int, max_patches: int,
use_thumbnail: bool = True, use_thumbnail: bool = True,
patch_size: Union[Tuple, int, dict] = None, patch_size: Optional[Union[Tuple, int, dict]] = None,
interpolation: Optional["F.InterpolationMode"] = None, interpolation: Optional["F.InterpolationMode"] = None,
): ):
""" """

View File

@ -194,7 +194,7 @@ class GPT2OnnxConfig(OnnxConfigWithPast):
self, self,
config: PretrainedConfig, config: PretrainedConfig,
task: str = "default", task: str = "default",
patching_specs: List[PatchingSpec] = None, patching_specs: Optional[List[PatchingSpec]] = None,
use_past: bool = False, use_past: bool = False,
): ):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)

View File

@ -461,8 +461,8 @@ class FlaxGPT2PreTrainedModel(FlaxPreTrainedModel):
position_ids=None, position_ids=None,
encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None,
params: dict = None, params: Optional[dict] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -404,8 +404,8 @@ class FlaxGPTNeoPreTrainedModel(FlaxPreTrainedModel):
input_ids, input_ids,
attention_mask=None, attention_mask=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -140,7 +140,7 @@ class GPTJOnnxConfig(OnnxConfigWithPast):
self, self,
config: PretrainedConfig, config: PretrainedConfig,
task: str = "default", task: str = "default",
patching_specs: List[PatchingSpec] = None, patching_specs: Optional[List[PatchingSpec]] = None,
use_past: bool = False, use_past: bool = False,
): ):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)

View File

@ -438,8 +438,8 @@ class FlaxGPTJPreTrainedModel(FlaxPreTrainedModel):
input_ids, input_ids,
attention_mask=None, attention_mask=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -756,7 +756,7 @@ def compute_segments(
mask_threshold: float = 0.5, mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8, overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None, label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None, target_size: Optional[Tuple[int, int]] = None,
): ):
height = mask_probs.shape[1] if target_size is None else target_size[0] height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1] width = mask_probs.shape[2] if target_size is None else target_size[1]
@ -899,13 +899,13 @@ class GroundingDinoImageProcessor(BaseImageProcessor):
self, self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
image_mean: Union[float, List[float]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Union[float, List[float]] = None, image_std: Optional[Union[float, List[float]]] = None,
do_convert_annotations: Optional[bool] = None, do_convert_annotations: Optional[bool] = None,
do_pad: bool = True, do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None, pad_size: Optional[Dict[str, int]] = None,

View File

@ -2554,7 +2554,7 @@ class GroundingDinoForObjectDetection(GroundingDinoPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: List[Dict[str, Union[torch.LongTensor, torch.FloatTensor]]] = None, labels: Optional[List[Dict[str, Union[torch.LongTensor, torch.FloatTensor]]]] = None,
): ):
r""" r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*): labels (`List[Dict]` of len `(batch_size,)`, *optional*):

View File

@ -101,7 +101,7 @@ class IdeficsImageProcessor(BaseImageProcessor):
image_size: Optional[Dict[str, int]] = None, image_size: Optional[Dict[str, int]] = None,
image_mean: Optional[Union[float, List[float]]] = None, image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None,
transform: Callable = None, transform: Optional[Callable] = None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,

View File

@ -190,7 +190,7 @@ class Idefics2ImageProcessor(BaseImageProcessor):
self, self,
do_convert_rgb: bool = True, do_convert_rgb: bool = True,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: float = 1 / 255, rescale_factor: float = 1 / 255,

View File

@ -295,10 +295,10 @@ class Idefics3ImageProcessor(BaseImageProcessor):
self, self,
do_convert_rgb: bool = True, do_convert_rgb: bool = True,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.LANCZOS, resample: PILImageResampling = PILImageResampling.LANCZOS,
do_image_splitting: bool = True, do_image_splitting: bool = True,
max_image_size: Dict[str, int] = None, max_image_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: float = 1 / 255, rescale_factor: float = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,

View File

@ -21,6 +21,7 @@ import argparse
import gc import gc
import re import re
from pathlib import Path from pathlib import Path
from typing import Optional
import requests import requests
import torch import torch
@ -63,7 +64,7 @@ ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
# fmt: on # fmt: on
def convert_old_keys_to_new_keys(state_dict_keys: dict = None): def convert_old_keys_to_new_keys(state_dict_keys: Optional[dict] = None):
""" """
Converts old keys to new keys using the mapping and dynamically removes the 'ijepa.' prefix if necessary. Converts old keys to new keys using the mapping and dynamically removes the 'ijepa.' prefix if necessary.

View File

@ -89,7 +89,7 @@ class ImageGPTImageProcessor(BaseImageProcessor):
# clusters is a first argument to maintain backwards compatibility with the old ImageGPTImageProcessor # clusters is a first argument to maintain backwards compatibility with the old ImageGPTImageProcessor
clusters: Optional[Union[List[List[int]], np.ndarray]] = None, clusters: Optional[Union[List[List[int]], np.ndarray]] = None,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_normalize: bool = True, do_normalize: bool = True,
do_color_quantize: bool = True, do_color_quantize: bool = True,
@ -180,7 +180,7 @@ class ImageGPTImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,
do_color_quantize: Optional[bool] = None, do_color_quantize: Optional[bool] = None,

View File

@ -141,7 +141,7 @@ class InformerConfig(PretrainedConfig):
distribution_output: str = "student_t", distribution_output: str = "student_t",
loss: str = "nll", loss: str = "nll",
input_size: int = 1, input_size: int = 1,
lags_sequence: List[int] = None, lags_sequence: Optional[List[int]] = None,
scaling: Optional[Union[str, bool]] = "mean", scaling: Optional[Union[str, bool]] = "mean",
num_dynamic_real_features: int = 0, num_dynamic_real_features: int = 0,
num_static_real_features: int = 0, num_static_real_features: int = 0,

View File

@ -84,7 +84,7 @@ class InstructBlipVideoImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,

View File

@ -139,7 +139,7 @@ class LayoutLMOnnxConfig(OnnxConfig):
self, self,
config: PretrainedConfig, config: PretrainedConfig,
task: str = "default", task: str = "default",
patching_specs: List[PatchingSpec] = None, patching_specs: Optional[List[PatchingSpec]] = None,
): ):
super().__init__(config, task=task, patching_specs=patching_specs) super().__init__(config, task=task, patching_specs=patching_specs)
self.max_2d_positions = config.max_2d_position_embeddings - 1 self.max_2d_positions = config.max_2d_position_embeddings - 1

View File

@ -129,7 +129,7 @@ class LayoutLMv2ImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
apply_ocr: bool = True, apply_ocr: bool = True,
ocr_lang: Optional[str] = None, ocr_lang: Optional[str] = None,
@ -201,7 +201,7 @@ class LayoutLMv2ImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None, resample: PILImageResampling = None,
apply_ocr: Optional[bool] = None, apply_ocr: Optional[bool] = None,
ocr_lang: Optional[str] = None, ocr_lang: Optional[str] = None,

View File

@ -71,7 +71,7 @@ class LayoutLMv2Processor(ProcessorMixin):
images, images,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -406,7 +406,7 @@ class LayoutLMv2Tokenizer(PreTrainedTokenizer):
self, self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -157,7 +157,7 @@ class LayoutLMv2TokenizerFast(PreTrainedTokenizerFast):
self, self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -146,13 +146,13 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR, resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True, do_rescale: bool = True,
rescale_value: float = 1 / 255, rescale_value: float = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,
image_mean: Union[float, Iterable[float]] = None, image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Union[float, Iterable[float]] = None, image_std: Optional[Union[float, Iterable[float]]] = None,
apply_ocr: bool = True, apply_ocr: bool = True,
ocr_lang: Optional[str] = None, ocr_lang: Optional[str] = None,
tesseract_config: Optional[str] = "", tesseract_config: Optional[str] = "",
@ -228,13 +228,13 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
self, self,
images: ImageInput, images: ImageInput,
do_resize: Optional[bool] = None, do_resize: Optional[bool] = None,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample=None, resample=None,
do_rescale: Optional[bool] = None, do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None, rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None, do_normalize: Optional[bool] = None,
image_mean: Union[float, Iterable[float]] = None, image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Union[float, Iterable[float]] = None, image_std: Optional[Union[float, Iterable[float]]] = None,
apply_ocr: Optional[bool] = None, apply_ocr: Optional[bool] = None,
ocr_lang: Optional[str] = None, ocr_lang: Optional[str] = None,
tesseract_config: Optional[str] = None, tesseract_config: Optional[str] = None,

View File

@ -71,7 +71,7 @@ class LayoutLMv3Processor(ProcessorMixin):
images, images,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -535,7 +535,7 @@ class LayoutLMv3Tokenizer(PreTrainedTokenizer):
self, self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -201,7 +201,7 @@ class LayoutLMv3TokenizerFast(PreTrainedTokenizerFast):
self, self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -70,7 +70,7 @@ class LayoutXLMProcessor(ProcessorMixin):
images, images,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -441,7 +441,7 @@ class LayoutXLMTokenizer(PreTrainedTokenizer):
self, self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -269,7 +269,7 @@ class LayoutXLMTokenizerFast(PreTrainedTokenizerFast):
self, self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None, boxes: Optional[Union[List[List[int]], List[List[List[int]]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True, add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False, padding: Union[bool, str, PaddingStrategy] = False,

View File

@ -90,10 +90,10 @@ class LevitImageProcessor(BaseImageProcessor):
def __init__( def __init__(
self, self,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,

View File

@ -467,8 +467,8 @@ class FlaxLlamaPreTrainedModel(FlaxPreTrainedModel):
input_ids, input_ids,
attention_mask=None, attention_mask=None,
position_ids=None, position_ids=None,
params: dict = None, params: Optional[dict] = None,
past_key_values: dict = None, past_key_values: Optional[dict] = None,
dropout_rng: jax.random.PRNGKey = None, dropout_rng: jax.random.PRNGKey = None,
train: bool = False, train: bool = False,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,

View File

@ -90,7 +90,7 @@ ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
# fmt: on # fmt: on
def convert_old_keys_to_new_keys(state_dict_keys: dict = None): def convert_old_keys_to_new_keys(state_dict_keys: Optional[dict] = None):
""" """
This function should be applied only once, on the concatenated keys to efficiently rename using This function should be applied only once, on the concatenated keys to efficiently rename using
the key mappings. the key mappings.

View File

@ -1287,7 +1287,7 @@ class Llama4VisionEncoderLayer(nn.Module):
hidden_state: torch.Tensor, hidden_state: torch.Tensor,
freqs_ci: torch.Tensor, freqs_ci: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = None, output_attentions: Optional[bool] = None,
): ):
# Self Attention # Self Attention
residual = hidden_state residual = hidden_state

View File

@ -99,10 +99,10 @@ class LlavaImageProcessor(BaseImageProcessor):
self, self,
do_pad: bool = False, do_pad: bool = False,
do_resize: bool = True, do_resize: bool = True,
size: Dict[str, int] = None, size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC, resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True, do_center_crop: bool = True,
crop_size: Dict[str, int] = None, crop_size: Optional[Dict[str, int]] = None,
do_rescale: bool = True, do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255, rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True, do_normalize: bool = True,

Some files were not shown because too many files have changed in this diff Show More