mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
fix condition where torch_dtype auto collides with model_kwargs. (#39054)
* fix condition where torch_dtype auto collides with model_kwargs. * update tests * update comment * fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
44b231671d
commit
d973e62fdd
@ -1005,13 +1005,21 @@ def pipeline(
|
||||
model_kwargs["device_map"] = device_map
|
||||
if torch_dtype is not None:
|
||||
if "torch_dtype" in model_kwargs:
|
||||
raise ValueError(
|
||||
'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those'
|
||||
" arguments might conflict, use only one.)"
|
||||
)
|
||||
if isinstance(torch_dtype, str) and hasattr(torch, torch_dtype):
|
||||
torch_dtype = getattr(torch, torch_dtype)
|
||||
model_kwargs["torch_dtype"] = torch_dtype
|
||||
# If the user did not explicitly provide `torch_dtype` (i.e. the function default "auto" is still
|
||||
# present) but a value is supplied inside `model_kwargs`, we silently defer to the latter instead of
|
||||
# raising. This prevents false positives like providing `torch_dtype` only via `model_kwargs` while the
|
||||
# top-level argument keeps its default value "auto".
|
||||
if torch_dtype == "auto":
|
||||
torch_dtype = None
|
||||
else:
|
||||
raise ValueError(
|
||||
'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those'
|
||||
" arguments might conflict, use only one.)"
|
||||
)
|
||||
if torch_dtype is not None:
|
||||
if isinstance(torch_dtype, str) and hasattr(torch, torch_dtype):
|
||||
torch_dtype = getattr(torch, torch_dtype)
|
||||
model_kwargs["torch_dtype"] = torch_dtype
|
||||
|
||||
model_name = model if isinstance(model, str) else None
|
||||
|
||||
|
@ -161,11 +161,11 @@ class ImageTextToTextPipelineTests(unittest.TestCase):
|
||||
[
|
||||
{
|
||||
"input_text": "<image> What this is? Assistant: This is",
|
||||
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
|
||||
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are facing the camera, and they",
|
||||
},
|
||||
{
|
||||
"input_text": "<image> What this is? Assistant: This is",
|
||||
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
|
||||
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are facing the camera, and they",
|
||||
},
|
||||
],
|
||||
)
|
||||
|
@ -441,11 +441,11 @@ class TextGenerationPipelineTests(unittest.TestCase):
|
||||
[{"generated_text": ("This is a test test test test test test")}],
|
||||
)
|
||||
|
||||
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
|
||||
# torch_dtype will be automatically set to torch.bfloat16 if not provided - check: https://github.com/huggingface/transformers/pull/38882
|
||||
pipe = pipeline(
|
||||
model="hf-internal-testing/tiny-random-bloom", device_map="auto", max_new_tokens=5, do_sample=False
|
||||
)
|
||||
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
|
||||
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
|
||||
out = pipe("This is a test")
|
||||
self.assertEqual(
|
||||
out,
|
||||
|
Loading…
Reference in New Issue
Block a user