mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Removes Roberta and Bert config dependencies from Longformer (#19343)
* removes roberta and bert config dependencies from longformer * adds copied from statements * fixes style * removes excessive comments and replace bert with longformer in a couple places * fixes style
This commit is contained in:
parent
226b8ef063
commit
d9101b71bc
@ -16,13 +16,12 @@
|
||||
from collections import OrderedDict
|
||||
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
from ...utils import TensorType, logging
|
||||
from ..roberta.configuration_roberta import RobertaConfig
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx.config import PatchingSpec
|
||||
from ...tokenization_utils_base import PreTrainedTokenizerBase
|
||||
|
||||
@ -44,7 +43,7 @@ LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
}
|
||||
|
||||
|
||||
class LongformerConfig(RobertaConfig):
|
||||
class LongformerConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`LongformerModel`] or a [`TFLongformerModel`]. It
|
||||
is used to instantiate a Longformer model according to the specified arguments, defining the model architecture.
|
||||
@ -55,10 +54,49 @@ class LongformerConfig(RobertaConfig):
|
||||
[allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) architecture with a sequence
|
||||
length 4,096.
|
||||
|
||||
The [`LongformerConfig`] class directly inherits [`RobertaConfig`]. It reuses the same defaults. Please check the
|
||||
parent class for more information.
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 30522):
|
||||
Vocabulary size of the Longformer model. Defines the number of different tokens that can be represented by
|
||||
the `inputs_ids` passed when calling [`LongformerModel`] or [`TFLongformerModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 12):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
intermediate_size (`int`, *optional*, defaults to 3072):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||||
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||||
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||||
The dropout ratio for the attention probabilities.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size (`int`, *optional*, defaults to 2):
|
||||
The vocabulary size of the `token_type_ids` passed when calling [`LongformerModel`] or
|
||||
[`TFLongformerModel`].
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the layer normalization layers.
|
||||
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
||||
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
||||
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
||||
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
||||
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
||||
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
classifier_dropout (`float`, *optional*):
|
||||
The dropout ratio for the classification head.
|
||||
attention_window (`int` or `List[int]`, *optional*, defaults to 512):
|
||||
Size of an attention window around each token. If an `int`, use the same size for all layers. To specify a
|
||||
different window size for each layer, use a `List[int]` where `len(attention_window) == num_hidden_layers`.
|
||||
@ -80,10 +118,52 @@ class LongformerConfig(RobertaConfig):
|
||||
model_type = "longformer"
|
||||
|
||||
def __init__(
|
||||
self, attention_window: Union[List[int], int] = 512, sep_token_id: int = 2, onnx_export: bool = False, **kwargs
|
||||
self,
|
||||
attention_window: Union[List[int], int] = 512,
|
||||
sep_token_id: int = 2,
|
||||
pad_token_id: int = 1,
|
||||
bos_token_id: int = 0,
|
||||
eos_token_id: int = 2,
|
||||
vocab_size: int = 30522,
|
||||
hidden_size: int = 768,
|
||||
num_hidden_layers: int = 12,
|
||||
num_attention_heads: int = 12,
|
||||
intermediate_size: int = 3072,
|
||||
hidden_act: str = "gelu",
|
||||
hidden_dropout_prob: float = 0.1,
|
||||
attention_probs_dropout_prob: float = 0.1,
|
||||
max_position_embeddings: int = 512,
|
||||
type_vocab_size: int = 2,
|
||||
initializer_range: float = 0.02,
|
||||
layer_norm_eps: float = 1e-12,
|
||||
position_embedding_type: str = "absolute",
|
||||
use_cache: bool = True,
|
||||
classifier_dropout: float = None,
|
||||
onnx_export: bool = False,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(sep_token_id=sep_token_id, **kwargs)
|
||||
"""Constructs LongformerConfig."""
|
||||
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||||
|
||||
self.attention_window = attention_window
|
||||
self.sep_token_id = sep_token_id
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.position_embedding_type = position_embedding_type
|
||||
self.use_cache = use_cache
|
||||
self.classifier_dropout = classifier_dropout
|
||||
self.onnx_export = onnx_export
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user