mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
add base for seq2seq finetuning
This commit is contained in:
parent
f8e98d6779
commit
d889e0b71b
67
examples/run_seq2seq_finetuning.py
Normal file
67
examples/run_seq2seq_finetuning.py
Normal file
@ -0,0 +1,67 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018 Microsoft and The HuggingFace Inc. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Finetuning seq2seq models for sequence generation.
|
||||
|
||||
We use the procedure described in [1] to finetune models for sequence
|
||||
generation. Let S1 and S2 be the source and target sequence respectively; we
|
||||
pack them using the start of sequence [SOS] and end of sequence [EOS] token:
|
||||
|
||||
[SOS] S1 [EOS] S2 [EOS]
|
||||
|
||||
We then mask a fixed percentage of token from S2 at random and learn to predict
|
||||
the masked words. [EOS] can be masked during finetuning so the model learns to
|
||||
terminate the generation process.
|
||||
|
||||
[1] Dong Li, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
|
||||
Gao, Ming Zhou, and Hsiao-Wuen Hon. “Unified Language Model Pre-Training for
|
||||
Natural Language Understanding and Generation.” (May 2019) ArXiv:1905.03197
|
||||
"""
|
||||
|
||||
import logging
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def set_seed(args):
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
if args.n_gpu > 0:
|
||||
torch.cuda.manual_seed_all(args.seed)
|
||||
|
||||
|
||||
def train(args, train_dataset, model, tokenizer):
|
||||
""" Fine-tune the pretrained model on the corpus. """
|
||||
# Data sampler
|
||||
# Data loader
|
||||
# Training
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def evaluate(args, model, tokenizer, prefix=""):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def main():
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def __main__():
|
||||
main()
|
Loading…
Reference in New Issue
Block a user