wrap forward passes with torch.no_grad() (#19416)

This commit is contained in:
Partho 2022-10-11 00:33:09 +05:30 committed by GitHub
parent 870a9542be
commit d739a707d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -570,7 +570,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
outputs = model(**inputs)
with torch.no_grad():
outputs = model(**inputs)
# test the sequence output
expected_slice = torch.tensor(
[
@ -608,7 +609,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
outputs = model(**inputs)
with torch.no_grad():
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((1, 21))
@ -657,7 +659,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
outputs = model(**inputs)
with torch.no_grad():
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((1, 21))
@ -705,7 +708,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
inputs_on_device = {k: v.to(torch_device) for k, v in inputs.items()}
outputs = model(**inputs_on_device)
with torch.no_grad():
outputs = model(**inputs_on_device)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((2, 28))
@ -774,15 +778,16 @@ class TapasModelIntegrationTest(unittest.TestCase):
float_answer = torch.FloatTensor(float_answer).to(torch_device)
# forward pass to get loss + logits:
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=labels,
numeric_values=numeric_values,
numeric_values_scale=numeric_values_scale,
float_answer=float_answer,
)
with torch.no_grad():
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=labels,
numeric_values=numeric_values,
numeric_values_scale=numeric_values_scale,
float_answer=float_answer,
)
# test the loss
loss = outputs.loss
@ -829,7 +834,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
outputs = model(**inputs)
with torch.no_grad():
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((1, 21))
@ -884,7 +890,8 @@ class TapasModelIntegrationTest(unittest.TestCase):
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
outputs = model(**inputs)
with torch.no_grad():
outputs = model(**inputs)
# test the classification logits
logits = outputs.logits