Update comments mentioning Python 2.

This commit is contained in:
Aymeric Augustin 2019-12-22 18:22:29 +01:00
parent 45841eaf7b
commit d6eaf4e6d2
11 changed files with 11 additions and 11 deletions

View File

@ -341,7 +341,7 @@ def train(args, train_dataset, model, tokenizer):
tr_loss, logging_loss = 0.0, 0.0 tr_loss, logging_loss = 0.0, 0.0
model.zero_grad() model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -159,7 +159,7 @@ def train(args, train_dataset, model, tokenizer, teacher=None):
tr_loss, logging_loss = 0.0, 0.0 tr_loss, logging_loss = 0.0, 0.0
model.zero_grad() model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -164,7 +164,7 @@ def train(args, train_dataset, model, tokenizer, criterion):
best_f1, n_no_improve = 0, 0 best_f1, n_no_improve = 0, 0
model.zero_grad() model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -185,7 +185,7 @@ def train(args, train_dataset, model, tokenizer):
train_iterator = trange( train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
) )
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -281,7 +281,7 @@ def train(args, train_dataset, model, tokenizer):
train_iterator = trange( train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
) )
set_seed(args) # Added here for reproducibility (even between python 2 and 3) set_seed(args) # Added here for reproducibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -145,7 +145,7 @@ def train(args, train_dataset, model, tokenizer):
best_steps = 0 best_steps = 0
model.zero_grad() model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -169,7 +169,7 @@ def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
train_iterator = trange( train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
) )
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -185,7 +185,7 @@ def train(args, train_dataset, model, tokenizer):
train_iterator = trange( train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
) )
# Added here for reproductibility (even between python 2 and 3) # Added here for reproductibility
set_seed(args) set_seed(args)
for _ in train_iterator: for _ in train_iterator:

View File

@ -164,7 +164,7 @@ def train(args, train_dataset, model, tokenizer):
train_iterator = trange( train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
) )
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):

View File

@ -14,7 +14,7 @@ To create the package for pypi.
creating the wheel and the source distribution (obviously). creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory. For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it - make sure you use python 3.x). (this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist" For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions. You should now have a /dist directory with both .whl and .tar.gz source versions.

View File

@ -155,7 +155,7 @@ def train(args, train_dataset, model, tokenizer):
tr_loss, logging_loss = 0.0, 0.0 tr_loss, logging_loss = 0.0, 0.0
model.zero_grad() model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):