Add accelerate support for M2M100 (#19912)

* add `accelerate` support for M2M100

* fix device set nit
This commit is contained in:
Younes Belkada 2022-10-27 18:06:55 +02:00 committed by GitHub
parent c766a2d70a
commit d56d723fad
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -532,6 +532,7 @@ class M2M100PreTrainedModel(PreTrainedModel):
config_class = M2M100Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["M2M100Attention"]
def _init_weights(self, module):
std = self.config.init_std
@ -693,10 +694,10 @@ class M2M100Encoder(M2M100PreTrainedModel):
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
@ -777,6 +778,7 @@ class M2M100Encoder(M2M100PreTrainedModel):
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_ids, inputs_embeds)
embed_pos = embed_pos.to(inputs_embeds.device)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
@ -868,10 +870,10 @@ class M2M100Decoder(M2M100PreTrainedModel):
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
@ -1010,6 +1012,7 @@ class M2M100Decoder(M2M100PreTrainedModel):
# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions