mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
parent
c852036b4a
commit
d5477baf7d
@ -27,7 +27,7 @@ This is still a work-in-progress – in particular documentation is still sparse
|
||||
| [**`summarization`**](https://github.com/huggingface/transformers/tree/master/examples/summarization) | CNN/Daily Mail | - | - | - | -
|
||||
| [**`translation`**](https://github.com/huggingface/transformers/tree/master/examples/translation) | WMT | - | - | - | -
|
||||
| [**`bertology`**](https://github.com/huggingface/transformers/tree/master/examples/bertology) | - | - | - | - | -
|
||||
| [**`adversarial`**](https://github.com/huggingface/transformers/tree/master/examples/adversarial) | HANS | - | - | - | -
|
||||
| [**`adversarial`**](https://github.com/huggingface/transformers/tree/master/examples/adversarial) | HANS | ✅ | - | - | -
|
||||
|
||||
|
||||
<br>
|
||||
|
231
examples/adversarial/run_hans.py
Normal file
231
examples/adversarial/run_hans.py
Normal file
@ -0,0 +1,231 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Finetuning the library models for sequence classification on HANS."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
HfArgumentParser,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
default_data_collator,
|
||||
set_seed,
|
||||
)
|
||||
from utils_hans import HansDataset, InputFeatures, hans_processors
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
"""
|
||||
|
||||
task_name: str = field(
|
||||
metadata={"help": "The name of the task to train selected in the list: " + ", ".join(hans_processors.keys())}
|
||||
)
|
||||
data_dir: str = field(
|
||||
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
|
||||
)
|
||||
max_seq_length: int = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
|
||||
|
||||
def hans_data_collator(features: List[InputFeatures]) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
Data collator that removes the "pairID" key if present.
|
||||
"""
|
||||
batch = default_data_collator(features)
|
||||
_ = batch.pop("pairID", None)
|
||||
return batch
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if (
|
||||
os.path.exists(training_args.output_dir)
|
||||
and os.listdir(training_args.output_dir)
|
||||
and training_args.do_train
|
||||
and not training_args.overwrite_output_dir
|
||||
):
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
|
||||
)
|
||||
logger.warning(
|
||||
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
||||
training_args.local_rank,
|
||||
training_args.device,
|
||||
training_args.n_gpu,
|
||||
bool(training_args.local_rank != -1),
|
||||
training_args.fp16,
|
||||
)
|
||||
logger.info("Training/evaluation parameters %s", training_args)
|
||||
|
||||
# Set seed
|
||||
set_seed(training_args.seed)
|
||||
|
||||
try:
|
||||
processor = hans_processors[data_args.task_name]()
|
||||
label_list = processor.get_labels()
|
||||
num_labels = len(label_list)
|
||||
except KeyError:
|
||||
raise ValueError("Task not found: %s" % (data_args.task_name))
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
num_labels=num_labels,
|
||||
finetuning_task=data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
# Get datasets
|
||||
train_dataset = (
|
||||
HansDataset(
|
||||
data_dir=data_args.data_dir,
|
||||
tokenizer=tokenizer,
|
||||
task=data_args.task_name,
|
||||
max_seq_length=data_args.max_seq_length,
|
||||
overwrite_cache=data_args.overwrite_cache,
|
||||
)
|
||||
if training_args.do_train
|
||||
else None
|
||||
)
|
||||
eval_dataset = (
|
||||
HansDataset(
|
||||
data_dir=data_args.data_dir,
|
||||
tokenizer=tokenizer,
|
||||
task=data_args.task_name,
|
||||
max_seq_length=data_args.max_seq_length,
|
||||
overwrite_cache=data_args.overwrite_cache,
|
||||
evaluate=True,
|
||||
)
|
||||
if training_args.do_eval
|
||||
else None
|
||||
)
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
data_collator=hans_data_collator,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
trainer.train(
|
||||
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
|
||||
)
|
||||
trainer.save_model()
|
||||
# For convenience, we also re-save the tokenizer to the same directory,
|
||||
# so that you can share your model easily on huggingface.co/models =)
|
||||
if trainer.is_world_master():
|
||||
tokenizer.save_pretrained(training_args.output_dir)
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
|
||||
output = trainer.predict(eval_dataset)
|
||||
preds = output.predictions
|
||||
preds = np.argmax(preds, axis=1)
|
||||
|
||||
pair_ids = [ex.pairID for ex in eval_dataset]
|
||||
output_eval_file = os.path.join(training_args.output_dir, "hans_predictions.txt")
|
||||
if trainer.is_world_master():
|
||||
with open(output_eval_file, "w") as writer:
|
||||
for pid, pred in zip(pair_ids, preds):
|
||||
writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
|
||||
|
||||
trainer._log(output.metrics)
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,577 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
|
||||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from transformers import (
|
||||
WEIGHTS_NAME,
|
||||
AdamW,
|
||||
AlbertConfig,
|
||||
AlbertForSequenceClassification,
|
||||
AlbertTokenizer,
|
||||
BertConfig,
|
||||
BertForSequenceClassification,
|
||||
BertTokenizer,
|
||||
DistilBertConfig,
|
||||
DistilBertForSequenceClassification,
|
||||
DistilBertTokenizer,
|
||||
RobertaConfig,
|
||||
RobertaForSequenceClassification,
|
||||
RobertaTokenizer,
|
||||
XLMConfig,
|
||||
XLMForSequenceClassification,
|
||||
XLMTokenizer,
|
||||
XLNetConfig,
|
||||
XLNetForSequenceClassification,
|
||||
XLNetTokenizer,
|
||||
default_data_collator,
|
||||
get_linear_schedule_with_warmup,
|
||||
)
|
||||
from utils_hans import HansDataset, hans_output_modes, hans_processors
|
||||
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
MODEL_CLASSES = {
|
||||
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
|
||||
"xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
|
||||
"xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
|
||||
"roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
|
||||
"distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
|
||||
"albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
|
||||
}
|
||||
|
||||
|
||||
def set_seed(args):
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
if args.n_gpu > 0:
|
||||
torch.cuda.manual_seed_all(args.seed)
|
||||
|
||||
|
||||
def train(args, train_dataset, model, tokenizer):
|
||||
""" Train the model """
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
|
||||
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
||||
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=default_data_collator,
|
||||
)
|
||||
|
||||
if args.max_steps > 0:
|
||||
t_total = args.max_steps
|
||||
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
||||
else:
|
||||
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
|
||||
# Prepare optimizer and schedule (linear warmup and decay)
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": args.weight_decay,
|
||||
},
|
||||
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
|
||||
]
|
||||
|
||||
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
||||
scheduler = get_linear_schedule_with_warmup(
|
||||
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
|
||||
)
|
||||
if args.fp16:
|
||||
try:
|
||||
from apex import amp
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
||||
|
||||
# multi-gpu training (should be after apex fp16 initialization)
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Distributed training (should be after apex fp16 initialization)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(
|
||||
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
|
||||
)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_dataset))
|
||||
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
||||
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
||||
logger.info(
|
||||
" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
||||
args.train_batch_size
|
||||
* args.gradient_accumulation_steps
|
||||
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
|
||||
)
|
||||
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
||||
logger.info(" Total optimization steps = %d", t_total)
|
||||
|
||||
global_step = 0
|
||||
tr_loss, logging_loss = 0.0, 0.0
|
||||
model.zero_grad()
|
||||
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
|
||||
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
|
||||
for _ in train_iterator:
|
||||
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
|
||||
for step, batch in enumerate(epoch_iterator):
|
||||
model.train()
|
||||
inputs = {k: t.to(args.device) for k, t in batch.items() if k != "pairID"}
|
||||
outputs = model(**inputs)
|
||||
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
|
||||
|
||||
if args.n_gpu > 1:
|
||||
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
|
||||
if args.fp16:
|
||||
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
tr_loss += loss.item()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
if args.fp16:
|
||||
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
||||
else:
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
||||
|
||||
optimizer.step()
|
||||
scheduler.step() # Update learning rate schedule
|
||||
model.zero_grad()
|
||||
global_step += 1
|
||||
|
||||
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
||||
logs = {}
|
||||
if (
|
||||
args.local_rank == -1 and args.evaluate_during_training
|
||||
): # Only evaluate when single GPU otherwise metrics may not average well
|
||||
results = evaluate(args, model, tokenizer)
|
||||
for key, value in results.items():
|
||||
eval_key = "eval_{}".format(key)
|
||||
logs[eval_key] = value
|
||||
|
||||
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
|
||||
learning_rate_scalar = scheduler.get_lr()[0]
|
||||
logs["learning_rate"] = learning_rate_scalar
|
||||
logs["loss"] = loss_scalar
|
||||
logging_loss = tr_loss
|
||||
|
||||
for key, value in logs.items():
|
||||
tb_writer.add_scalar(key, value, global_step)
|
||||
# print(json.dumps({**logs, **{'step': global_step}}))
|
||||
|
||||
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
||||
# Save model checkpoint
|
||||
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
model_to_save = (
|
||||
model.module if hasattr(model, "module") else model
|
||||
) # Take care of distributed/parallel training
|
||||
model_to_save.save_pretrained(output_dir)
|
||||
torch.save(args, os.path.join(output_dir, "training_args.bin"))
|
||||
logger.info("Saving model checkpoint to %s", output_dir)
|
||||
|
||||
if args.max_steps > 0 and global_step > args.max_steps:
|
||||
epoch_iterator.close()
|
||||
break
|
||||
if args.max_steps > 0 and global_step > args.max_steps:
|
||||
train_iterator.close()
|
||||
break
|
||||
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer.close()
|
||||
|
||||
return global_step, tr_loss / global_step
|
||||
|
||||
|
||||
def evaluate(args, model, tokenizer, label_list, prefix=""):
|
||||
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
||||
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
|
||||
eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
|
||||
|
||||
results = {}
|
||||
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
|
||||
eval_dataset = HansDataset(
|
||||
args.data_dir,
|
||||
tokenizer,
|
||||
args.task_name,
|
||||
args.max_seq_length,
|
||||
overwrite_cache=args.overwrite_cache,
|
||||
evaluate=True,
|
||||
)
|
||||
|
||||
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(eval_output_dir)
|
||||
|
||||
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
||||
# Note that DistributedSampler samples randomly
|
||||
eval_sampler = SequentialSampler(eval_dataset)
|
||||
eval_dataloader = DataLoader(
|
||||
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=default_data_collator,
|
||||
)
|
||||
|
||||
# multi-gpu eval
|
||||
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(" Num examples = %d", len(eval_dataset))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
eval_loss = 0.0
|
||||
nb_eval_steps = 0
|
||||
preds = None
|
||||
out_label_ids = None
|
||||
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
||||
model.eval()
|
||||
inputs = {k: t.to(args.device) for k, t in batch.items() if k != "pairID"}
|
||||
pair_ids = batch.pop("pairID", None)
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
tmp_eval_loss, logits = outputs[:2]
|
||||
|
||||
eval_loss += tmp_eval_loss.mean().item()
|
||||
nb_eval_steps += 1
|
||||
if preds is None:
|
||||
preds = logits.detach().cpu().numpy()
|
||||
out_label_ids = inputs["labels"].detach().cpu().numpy()
|
||||
pair_ids = pair_ids.detach().cpu().numpy()
|
||||
else:
|
||||
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
|
||||
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
|
||||
pair_ids = np.append(pair_ids, pair_ids.detach().cpu().numpy(), axis=0)
|
||||
|
||||
eval_loss = eval_loss / nb_eval_steps
|
||||
if args.output_mode == "classification":
|
||||
preds = np.argmax(preds, axis=1)
|
||||
elif args.output_mode == "regression":
|
||||
preds = np.squeeze(preds)
|
||||
|
||||
output_eval_file = os.path.join(eval_output_dir, "hans_predictions.txt")
|
||||
with open(output_eval_file, "w") as writer:
|
||||
writer.write("pairID,gld_label\n")
|
||||
for pid, pred in zip(pair_ids, preds):
|
||||
writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Required parameters
|
||||
parser.add_argument(
|
||||
"--data_dir",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_type",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_name_or_path",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--task_name",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="The name of the task to train selected in the list: " + ", ".join(hans_processors.keys()),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="The output directory where the model predictions and checkpoints will be written.",
|
||||
)
|
||||
|
||||
# Other parameters
|
||||
parser.add_argument(
|
||||
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer_name",
|
||||
default="",
|
||||
type=str,
|
||||
help="Pretrained tokenizer name or path if not the same as model_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache_dir",
|
||||
default="",
|
||||
type=str,
|
||||
help="Where do you want to store the pre-trained models downloaded from s3",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_seq_length",
|
||||
default=128,
|
||||
type=int,
|
||||
help="The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded.",
|
||||
)
|
||||
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
|
||||
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
|
||||
parser.add_argument(
|
||||
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
|
||||
)
|
||||
|
||||
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
|
||||
parser.add_argument(
|
||||
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gradient_accumulation_steps",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||
)
|
||||
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
|
||||
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
|
||||
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
|
||||
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
||||
parser.add_argument(
|
||||
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_steps",
|
||||
default=-1,
|
||||
type=int,
|
||||
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
|
||||
)
|
||||
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
|
||||
|
||||
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
|
||||
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
|
||||
parser.add_argument(
|
||||
"--eval_all_checkpoints",
|
||||
action="store_true",
|
||||
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
|
||||
)
|
||||
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
|
||||
parser.add_argument(
|
||||
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
|
||||
|
||||
parser.add_argument(
|
||||
"--fp16",
|
||||
action="store_true",
|
||||
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fp16_opt_level",
|
||||
type=str,
|
||||
default="O1",
|
||||
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
||||
"See details at https://nvidia.github.io/apex/amp.html",
|
||||
)
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
||||
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
|
||||
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
|
||||
args = parser.parse_args()
|
||||
|
||||
if (
|
||||
os.path.exists(args.output_dir)
|
||||
and os.listdir(args.output_dir)
|
||||
and args.do_train
|
||||
and not args.overwrite_output_dir
|
||||
):
|
||||
raise ValueError(
|
||||
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
|
||||
args.output_dir
|
||||
)
|
||||
)
|
||||
|
||||
# Setup distant debugging if needed
|
||||
if args.server_ip and args.server_port:
|
||||
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
||||
import ptvsd
|
||||
|
||||
print("Waiting for debugger attach")
|
||||
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
||||
ptvsd.wait_for_attach()
|
||||
|
||||
# Setup CUDA, GPU & distributed training
|
||||
if args.local_rank == -1 or args.no_cuda:
|
||||
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
||||
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
|
||||
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
||||
torch.cuda.set_device(args.local_rank)
|
||||
device = torch.device("cuda", args.local_rank)
|
||||
torch.distributed.init_process_group(backend="nccl")
|
||||
args.n_gpu = 1
|
||||
args.device = device
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
|
||||
)
|
||||
logger.warning(
|
||||
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
||||
args.local_rank,
|
||||
device,
|
||||
args.n_gpu,
|
||||
bool(args.local_rank != -1),
|
||||
args.fp16,
|
||||
)
|
||||
|
||||
# Set seed
|
||||
set_seed(args)
|
||||
|
||||
# Prepare GLUE task
|
||||
args.task_name = args.task_name.lower()
|
||||
if args.task_name not in hans_processors:
|
||||
raise ValueError("Task not found: %s" % (args.task_name))
|
||||
processor = hans_processors[args.task_name]()
|
||||
args.output_mode = hans_output_modes[args.task_name]
|
||||
label_list = processor.get_labels()
|
||||
num_labels = len(label_list)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
if args.local_rank not in [-1, 0]:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
|
||||
args.model_type = args.model_type.lower()
|
||||
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
||||
config = config_class.from_pretrained(
|
||||
args.config_name if args.config_name else args.model_name_or_path,
|
||||
num_labels=num_labels,
|
||||
finetuning_task=args.task_name,
|
||||
cache_dir=args.cache_dir if args.cache_dir else None,
|
||||
)
|
||||
tokenizer = tokenizer_class.from_pretrained(
|
||||
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
|
||||
do_lower_case=args.do_lower_case,
|
||||
cache_dir=args.cache_dir if args.cache_dir else None,
|
||||
)
|
||||
model = model_class.from_pretrained(
|
||||
args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=args.cache_dir if args.cache_dir else None,
|
||||
)
|
||||
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
|
||||
model.to(args.device)
|
||||
|
||||
logger.info("Training/evaluation parameters %s", args)
|
||||
|
||||
# Training
|
||||
if args.do_train:
|
||||
train_dataset = HansDataset(
|
||||
args.data_dir, tokenizer, args.task_name, args.max_seq_length, overwrite_cache=args.overwrite_cache
|
||||
)
|
||||
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
|
||||
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
||||
|
||||
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
||||
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
# Create output directory if needed
|
||||
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(args.output_dir)
|
||||
|
||||
logger.info("Saving model checkpoint to %s", args.output_dir)
|
||||
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
||||
# They can then be reloaded using `from_pretrained()`
|
||||
model_to_save = (
|
||||
model.module if hasattr(model, "module") else model
|
||||
) # Take care of distributed/parallel training
|
||||
model_to_save.save_pretrained(args.output_dir)
|
||||
tokenizer.save_pretrained(args.output_dir)
|
||||
|
||||
# Good practice: save your training arguments together with the trained model
|
||||
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
|
||||
|
||||
# Load a trained model and vocabulary that you have fine-tuned
|
||||
model = model_class.from_pretrained(args.output_dir)
|
||||
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
|
||||
model.to(args.device)
|
||||
|
||||
# Evaluation
|
||||
results = {}
|
||||
if args.do_eval and args.local_rank in [-1, 0]:
|
||||
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
||||
checkpoints = [args.output_dir]
|
||||
if args.eval_all_checkpoints:
|
||||
checkpoints = list(
|
||||
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
|
||||
)
|
||||
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
|
||||
logger.info("Evaluate the following checkpoints: %s", checkpoints)
|
||||
for checkpoint in checkpoints:
|
||||
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
|
||||
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
|
||||
|
||||
model = model_class.from_pretrained(checkpoint)
|
||||
model.to(args.device)
|
||||
result = evaluate(args, model, tokenizer, label_list, prefix=prefix)
|
||||
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
|
||||
results.update(result)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -22,15 +22,7 @@ from typing import List, Optional, Union
|
||||
import tqdm
|
||||
from filelock import FileLock
|
||||
|
||||
from transformers import (
|
||||
DataProcessor,
|
||||
PreTrainedTokenizer,
|
||||
RobertaTokenizer,
|
||||
RobertaTokenizerFast,
|
||||
XLMRobertaTokenizer,
|
||||
is_tf_available,
|
||||
is_torch_available,
|
||||
)
|
||||
from transformers import DataProcessor, PreTrainedTokenizer, is_tf_available, is_torch_available
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -106,7 +98,6 @@ if is_torch_available():
|
||||
evaluate: bool = False,
|
||||
):
|
||||
processor = hans_processors[task]()
|
||||
output_mode = hans_output_modes[task]
|
||||
|
||||
cached_features_file = os.path.join(
|
||||
data_dir,
|
||||
@ -127,22 +118,12 @@ if is_torch_available():
|
||||
logger.info(f"Creating features from dataset file at {data_dir}")
|
||||
label_list = processor.get_labels()
|
||||
|
||||
if task in ["mnli", "mnli-mm"] and tokenizer.__class__ in (
|
||||
RobertaTokenizer,
|
||||
RobertaTokenizerFast,
|
||||
XLMRobertaTokenizer,
|
||||
):
|
||||
# HACK(label indices are swapped in RoBERTa pretrained model)
|
||||
label_list[1], label_list[2] = label_list[2], label_list[1]
|
||||
examples = (
|
||||
processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
|
||||
)
|
||||
|
||||
logger.info("Training examples: %s", len(examples))
|
||||
# TODO clean up all this to leverage built-in features of tokenizers
|
||||
self.features = hans_convert_examples_to_features(
|
||||
examples, label_list, max_seq_length, tokenizer, output_mode
|
||||
)
|
||||
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
|
||||
logger.info("Saving features into cached file %s", cached_features_file)
|
||||
torch.save(self.features, cached_features_file)
|
||||
|
||||
@ -174,21 +155,10 @@ if is_tf_available():
|
||||
evaluate: bool = False,
|
||||
):
|
||||
processor = hans_processors[task]()
|
||||
output_mode = hans_output_modes[task]
|
||||
label_list = processor.get_labels()
|
||||
|
||||
if task in ["mnli", "mnli-mm"] and tokenizer.__class__ in (
|
||||
RobertaTokenizer,
|
||||
RobertaTokenizerFast,
|
||||
XLMRobertaTokenizer,
|
||||
):
|
||||
# HACK(label indices are swapped in RoBERTa pretrained model)
|
||||
label_list[1], label_list[2] = label_list[2], label_list[1]
|
||||
|
||||
examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
|
||||
self.features = hans_convert_examples_to_features(
|
||||
examples, label_list, max_seq_length, tokenizer, output_mode
|
||||
)
|
||||
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
|
||||
|
||||
def gen():
|
||||
for (ex_index, ex) in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
|
||||
@ -240,15 +210,6 @@ if is_tf_available():
|
||||
class HansProcessor(DataProcessor):
|
||||
"""Processor for the HANS data set."""
|
||||
|
||||
def get_example_from_tensor_dict(self, tensor_dict):
|
||||
"""See base class."""
|
||||
return InputExample(
|
||||
tensor_dict["idx"].numpy(),
|
||||
tensor_dict["premise"].numpy().decode("utf-8"),
|
||||
tensor_dict["hypothesis"].numpy().decode("utf-8"),
|
||||
str(tensor_dict["label"].numpy()),
|
||||
)
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train")
|
||||
@ -277,11 +238,7 @@ class HansProcessor(DataProcessor):
|
||||
|
||||
|
||||
def hans_convert_examples_to_features(
|
||||
examples: List[InputExample],
|
||||
label_list: List[str],
|
||||
max_length: int,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
output_mode: str,
|
||||
examples: List[InputExample], label_list: List[str], max_length: int, tokenizer: PreTrainedTokenizer,
|
||||
):
|
||||
"""
|
||||
Loads a data file into a list of ``InputFeatures``
|
||||
@ -313,19 +270,8 @@ def hans_convert_examples_to_features(
|
||||
pad_to_max_length=True,
|
||||
return_overflowing_tokens=True,
|
||||
)
|
||||
if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0:
|
||||
logger.info(
|
||||
"Attention! you are cropping tokens (swag task is ok). "
|
||||
"If you are training ARC and RACE and you are poping question + options,"
|
||||
"you need to try to use a bigger max seq length!"
|
||||
)
|
||||
|
||||
if output_mode == "classification":
|
||||
label = label_map[example.label] if example.label in label_map else 0
|
||||
elif output_mode == "regression":
|
||||
label = float(example.label)
|
||||
else:
|
||||
raise KeyError(output_mode)
|
||||
|
||||
pairID = int(example.pairID)
|
||||
|
||||
@ -346,7 +292,3 @@ hans_tasks_num_labels = {
|
||||
hans_processors = {
|
||||
"hans": HansProcessor,
|
||||
}
|
||||
|
||||
hans_output_modes = {
|
||||
"hans": "classification",
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user