Rever changes to TF distilbert due to failed test: TFDistilBertModelTest.test_pt_tf_model_equivalence

This commit is contained in:
Lorenzo Ampil 2019-10-27 14:51:36 +08:00
parent ec276d6aba
commit d36680df54

View File

@ -532,7 +532,7 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertModel.from_pretrained('distilbert-base-uncased') model = TFDistilBertModel.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
@ -590,7 +590,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-uncased') model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
prediction_scores = outputs[0] prediction_scores = outputs[0]
@ -645,7 +645,7 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
logits = outputs[0] logits = outputs[0]
@ -702,7 +702,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased') model = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids) outputs = model(input_ids)
start_scores, end_scores = outputs[:2] start_scores, end_scores = outputs[:2]