mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Rever changes to TF distilbert due to failed test: TFDistilBertModelTest.test_pt_tf_model_equivalence
This commit is contained in:
parent
ec276d6aba
commit
d36680df54
@ -532,7 +532,7 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
|
||||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = TFDistilBertModel.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
@ -590,7 +590,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
|
||||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores = outputs[0]
|
||||
|
||||
@ -645,7 +645,7 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel):
|
||||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
logits = outputs[0]
|
||||
|
||||
@ -702,7 +702,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel):
|
||||
|
||||
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
||||
model = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
|
||||
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
start_scores, end_scores = outputs[:2]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user