mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
[docs] Model docs (#36469)
* initial * fix * fix * update * fix * fixes * quantization * attention mask visualizer * multimodal * small changes * fix code samples
This commit is contained in:
parent
beb9b5b022
commit
d253de6d58
@ -14,159 +14,85 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BERT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BERT
|
||||
|
||||
The BERT model was proposed in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a
|
||||
bidirectional transformer pretrained using a combination of masked language modeling objective and next sentence
|
||||
prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia.
|
||||
[BERT](https://huggingface.co/papers/1810.04805) is a bidirectional transformer pretrained on unlabeled text to predict masked tokens in a sentence and to predict whether one sentence follows another. The main idea is that by randomly masking some tokens, the model can train on text to the left and right, giving it a more thorough understanding. BERT is also very versatile because its learned language representations can be adapted for other NLP tasks by fine-tuning an additional layer or head.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original BERT checkpoints under the [BERT](https://huggingface.co/collections/google/bert-release-64ff5e7a4be99045d1896dbc) collection.
|
||||
|
||||
*We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations
|
||||
from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional
|
||||
representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result,
|
||||
the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models
|
||||
for a wide range of tasks, such as question answering and language inference, without substantial task-specific
|
||||
architecture modifications.*
|
||||
> [!TIP]
|
||||
> Click on the BERT models in the right sidebar for more examples of how to apply BERT to different language tasks.
|
||||
|
||||
*BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural
|
||||
language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI
|
||||
accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute
|
||||
improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).*
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/google-research/bert).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Usage tips
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
- BERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
- BERT was trained with the masked language modeling (MLM) and next sentence prediction (NSP) objectives. It is
|
||||
efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.
|
||||
- Corrupts the inputs by using random masking, more precisely, during pretraining, a given percentage of tokens (usually 15%) is masked by:
|
||||
|
||||
* a special mask token with probability 0.8
|
||||
* a random token different from the one masked with probability 0.1
|
||||
* the same token with probability 0.1
|
||||
|
||||
- The model must predict the original sentence, but has a second objective: inputs are two sentences A and B (with a separation token in between). With probability 50%, the sentences are consecutive in the corpus, in the remaining 50% they are not related. The model has to predict if the sentences are consecutive or not.
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```
|
||||
from transformers import BertModel
|
||||
|
||||
model = BertModel.from_pretrained("bert-base-uncased", torch_dtype=torch.float16, attn_implementation="sdpa")
|
||||
...
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="google-bert/bert-base-uncased",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create [MASK] through a process known as photosynthesis.")
|
||||
```
|
||||
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
On a local benchmark (A100-80GB, CPUx12, RAM 96.6GB, PyTorch 2.2.0, OS Ubuntu 22.04) with `float16`, we saw the
|
||||
following speedups during training and inference.
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
#### Training
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google-bert/bert-base-uncased",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"google-bert/bert-base-uncased",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
|batch_size|seq_len|Time per batch (eager - s)|Time per batch (sdpa - s)|Speedup (%)|Eager peak mem (MB)|sdpa peak mem (MB)|Mem saving (%)|
|
||||
|----------|-------|--------------------------|-------------------------|-----------|-------------------|------------------|--------------|
|
||||
|4 |256 |0.023 |0.017 |35.472 |939.213 |764.834 |22.800 |
|
||||
|4 |512 |0.023 |0.018 |23.687 |1970.447 |1227.162 |60.569 |
|
||||
|8 |256 |0.023 |0.018 |23.491 |1594.295 |1226.114 |30.028 |
|
||||
|8 |512 |0.035 |0.025 |43.058 |3629.401 |2134.262 |70.054 |
|
||||
|16 |256 |0.030 |0.024 |25.583 |2874.426 |2134.262 |34.680 |
|
||||
|16 |512 |0.064 |0.044 |46.223 |6964.659 |3961.013 |75.830 |
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
#### Inference
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
|batch_size|seq_len|Per token latency eager (ms)|Per token latency SDPA (ms)|Speedup (%)|Mem eager (MB)|Mem BT (MB)|Mem saved (%)|
|
||||
|----------|-------|----------------------------|---------------------------|-----------|--------------|-----------|-------------|
|
||||
|1 |128 |5.736 |4.987 |15.022 |282.661 |282.924 |-0.093 |
|
||||
|1 |256 |5.689 |4.945 |15.055 |298.686 |298.948 |-0.088 |
|
||||
|2 |128 |6.154 |4.982 |23.521 |314.523 |314.785 |-0.083 |
|
||||
|2 |256 |6.201 |4.949 |25.303 |347.546 |347.033 |0.148 |
|
||||
|4 |128 |6.049 |4.987 |21.305 |378.895 |379.301 |-0.107 |
|
||||
|4 |256 |6.285 |5.364 |17.166 |443.209 |444.382 |-0.264 |
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google-bert/bert-base-uncased --device 0
|
||||
```
|
||||
|
||||
## Resources
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
## Notes
|
||||
|
||||
<PipelineTag pipeline="text-classification"/>
|
||||
|
||||
- A blog post on [BERT Text Classification in a different language](https://www.philschmid.de/bert-text-classification-in-a-different-language).
|
||||
- A notebook for [Finetuning BERT (and friends) for multi-label text classification](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/BERT/Fine_tuning_BERT_(and_friends)_for_multi_label_text_classification.ipynb).
|
||||
- A notebook on how to [Finetune BERT for multi-label classification using PyTorch](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb). 🌎
|
||||
- A notebook on how to [warm-start an EncoderDecoder model with BERT for summarization](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb).
|
||||
- [`BertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
|
||||
- [`TFBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
|
||||
- [`FlaxBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
|
||||
<PipelineTag pipeline="token-classification"/>
|
||||
|
||||
- A blog post on how to use [Hugging Face Transformers with Keras: Fine-tune a non-English BERT for Named Entity Recognition](https://www.philschmid.de/huggingface-transformers-keras-tf).
|
||||
- A notebook for [Finetuning BERT for named-entity recognition](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/BERT/Custom_Named_Entity_Recognition_with_BERT_only_first_wordpiece.ipynb) using only the first wordpiece of each word in the word label during tokenization. To propagate the label of the word to all wordpieces, see this [version](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/BERT/Custom_Named_Entity_Recognition_with_BERT.ipynb) of the notebook instead.
|
||||
- [`BertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
|
||||
- [`TFBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
|
||||
- [`FlaxBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
|
||||
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
|
||||
<PipelineTag pipeline="fill-mask"/>
|
||||
|
||||
- [`BertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
|
||||
- [`TFBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
- [`FlaxBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
|
||||
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
|
||||
<PipelineTag pipeline="question-answering"/>
|
||||
|
||||
- [`BertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
|
||||
- [`TFBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
|
||||
- [`FlaxBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering).
|
||||
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course.
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
|
||||
**Multiple choice**
|
||||
- [`BertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
|
||||
- [`TFBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
⚡️ **Inference**
|
||||
- A blog post on how to [Accelerate BERT inference with Hugging Face Transformers and AWS Inferentia](https://huggingface.co/blog/bert-inferentia-sagemaker).
|
||||
- A blog post on how to [Accelerate BERT inference with DeepSpeed-Inference on GPUs](https://www.philschmid.de/bert-deepspeed-inference).
|
||||
|
||||
⚙️ **Pretraining**
|
||||
- A blog post on [Pre-Training BERT with Hugging Face Transformers and Habana Gaudi](https://www.philschmid.de/pre-training-bert-habana).
|
||||
|
||||
🚀 **Deploy**
|
||||
- A blog post on how to [Convert Transformers to ONNX with Hugging Face Optimum](https://www.philschmid.de/convert-transformers-to-onnx).
|
||||
- A blog post on how to [Setup Deep Learning environment for Hugging Face Transformers with Habana Gaudi on AWS](https://www.philschmid.de/getting-started-habana-gaudi#conclusion).
|
||||
- A blog post on [Autoscaling BERT with Hugging Face Transformers, Amazon SageMaker and Terraform module](https://www.philschmid.de/terraform-huggingface-amazon-sagemaker-advanced).
|
||||
- A blog post on [Serverless BERT with HuggingFace, AWS Lambda, and Docker](https://www.philschmid.de/serverless-bert-with-huggingface-aws-lambda-docker).
|
||||
- A blog post on [Hugging Face Transformers BERT fine-tuning using Amazon SageMaker and Training Compiler](https://www.philschmid.de/huggingface-amazon-sagemaker-training-compiler).
|
||||
- A blog post on [Task-specific knowledge distillation for BERT using Transformers & Amazon SageMaker](https://www.philschmid.de/knowledge-distillation-bert-transformers).
|
||||
- Inputs should be padded on the right because BERT uses absolute position embeddings.
|
||||
|
||||
## BertConfig
|
||||
|
||||
@ -181,35 +107,10 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
- create_token_type_ids_from_sequences
|
||||
- save_vocabulary
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
## BertTokenizerFast
|
||||
|
||||
[[autodoc]] BertTokenizerFast
|
||||
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
## TFBertTokenizer
|
||||
|
||||
[[autodoc]] TFBertTokenizer
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Bert specific outputs
|
||||
|
||||
[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput
|
||||
|
||||
[[autodoc]] models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
|
||||
|
||||
[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
|
||||
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
## BertModel
|
||||
|
||||
[[autodoc]] BertModel
|
||||
@ -255,8 +156,9 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] BertForQuestionAnswering
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
<tf>
|
||||
## TFBertTokenizer
|
||||
|
||||
[[autodoc]] TFBertTokenizer
|
||||
|
||||
## TFBertModel
|
||||
|
||||
@ -303,9 +205,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] TFBertForQuestionAnswering
|
||||
- call
|
||||
|
||||
</tf>
|
||||
<jax>
|
||||
|
||||
## FlaxBertModel
|
||||
|
||||
[[autodoc]] FlaxBertModel
|
||||
@ -351,7 +250,10 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] FlaxBertForQuestionAnswering
|
||||
- __call__
|
||||
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
## Bert specific outputs
|
||||
|
||||
[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput
|
||||
|
||||
[[autodoc]] models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
|
||||
|
||||
[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
|
@ -15,74 +15,63 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Gemma3
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Gemma 3
|
||||
|
||||
The Gemma 3 model was proposed in the [Gemma 3 Techncial Report](https://goo.gle/Gemma3Report) by Google. It is a vision-language model composed by a [SigLIP](siglip) vision encoder and a [Gemma 2](gemma_2) language decoder, linked by a multimodal linear projection. It cuts an image into a fixed number of tokens, in the same way as SigLIP, as long as the image does not exceed certain aspect ratio. For images that exceed the given aspect ratio, it crops the image into multiple smaller patches and concatenates them with the base image embedding. One particularity is that the model uses bidirectional attention on all the image tokens. In addition, the model interleaves sliding window local attention with full causal attention in the language backbone, where each sixth layer is a full causal attention layer.
|
||||
[Gemma 3](https://goo.gle/Gemma3Report) is a multimodal model with pretrained and instruction-tuned variants, available in 1B, 13B, and 27B parameters. The architecture is mostly the same as the previous Gemma versions. The key differences are alternating 5 local sliding window self-attention layers for every global self-attention layer, support for a longer context length of 128K tokens, and a [SigLip](./siglip) encoder that can "pan & scan" high-resolution images to prevent information from disappearing in high resolution images or images with non-square aspect ratios.
|
||||
|
||||
This model was contributed by [Ryan Mullins](https://huggingface.co/RyanMullins), [Raushan Turganbay](https://huggingface.co/RaushanTurganbay) [Arthur Zucker](https://huggingface.co/ArthurZ), and [Pedro Cuenca](https://huggingface.co/pcuenq).
|
||||
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
|
||||
|
||||
You can find all the original Gemma 3 checkpoints under the [Gemma 3](https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b) release.
|
||||
|
||||
## Usage tips
|
||||
> [!TIP]
|
||||
> Click on the Gemma 3 models in the right sidebar for more examples of how to apply Gemma to different vision and language tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
- For image+text and image-only inputs use `Gemma3ForConditionalGeneration`.
|
||||
- For text-only inputs use `Gemma3ForCausalLM` for generation to avoid loading the vision tower.
|
||||
- Each sample can contain multiple images, and the number of images can vary between samples. However, make sure to pass correctly batched images to the processor, where each batch is a list of one or more images.
|
||||
- The text passed to the processor should have a `<start_of_image>` token wherever an image should be inserted.
|
||||
- The processor has its own `apply_chat_template` method to convert chat messages to model inputs. See the examples below for more details on how to use it.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
### Image cropping for high resolution images
|
||||
|
||||
The model supports cropping images into smaller patches when the image aspect ratio exceeds a certain value. By default the images are not cropped and only the base image is forwarded to the model. Users can set `do_pan_and_scan=True` to obtain several crops per image along with the base image to improve the quality in DocVQA or similar tasks requiring higher resolution images.
|
||||
|
||||
Pan and scan is an inference time optimization to handle images with skewed aspect ratios. When enabled, it improves performance on tasks related to document understanding, infographics, OCR, etc.
|
||||
|
||||
```python
|
||||
|
||||
processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it", padding_side="left")
|
||||
|
||||
url = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{"type": "text", "text": "You are a helpful assistant."}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user", "content": [
|
||||
{"type": "image", "url": url},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
add_generation_prompt=True,
|
||||
do_pan_and_scan=True,
|
||||
).to(model.device)
|
||||
|
||||
pipeline = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="google/gemma-3-4b-pt",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
pipeline(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
text="<start_of_image> What is shown in this image?"
|
||||
)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
## Usage Example
|
||||
|
||||
### Single-image Inference
|
||||
|
||||
```python
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
|
||||
|
||||
model_id = "google/gemma-3-4b-it"
|
||||
model = Gemma3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
||||
model = Gemma3ForConditionalGeneration.from_pretrained(
|
||||
"google/gemma-3-4b-it",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"google/gemma-3-4b-it",
|
||||
padding_side="left"
|
||||
)
|
||||
|
||||
url = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
@ -92,7 +81,7 @@ messages = [
|
||||
},
|
||||
{
|
||||
"role": "user", "content": [
|
||||
{"type": "image", "url": url},
|
||||
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
]
|
||||
},
|
||||
@ -103,21 +92,43 @@ inputs = processor.apply_chat_template(
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
add_generation_prompt=True,
|
||||
).to(model.device)
|
||||
).to("cuda")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=50)
|
||||
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])
|
||||
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
### Multi-image Inference
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```python
|
||||
model_id = "google/gemma-3-4b-it"
|
||||
model = Gemma3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model google/gemma-3-1b-pt --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
# pip install torchao
|
||||
import torch
|
||||
from transformers import TorchAoConfig, Gemma3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
model = Gemma3ForConditionalGeneration.from_pretrained(
|
||||
"google/gemma-3-27b-it",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"google/gemma-3-27b-it",
|
||||
padding_side="left"
|
||||
)
|
||||
|
||||
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
|
||||
url_stop = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
@ -127,9 +138,8 @@ messages = [
|
||||
},
|
||||
{
|
||||
"role": "user", "content": [
|
||||
{"type": "image", "url": url_cow},
|
||||
{"type": "image", "url": url_stop},
|
||||
{"type": "text", "text": "Are these two images identical?"},
|
||||
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
@ -139,33 +149,81 @@ inputs = processor.apply_chat_template(
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
add_generation_prompt=True,
|
||||
).to(model.device)
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=50)
|
||||
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])
|
||||
).to("cuda")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
### Text-only inference
|
||||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||||
|
||||
You can use the VLMs for text-only generation by omitting images in your input. However, you can also load the models in text-only mode as shown below. This will skip loading the vision tower and will save resources when you just need the LLM capabilities.
|
||||
```python
|
||||
from transformers import AutoTokenizer, Gemma3ForCausalLM
|
||||
|
||||
model_id = "google/gemma-3-1b-it"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = Gemma3ForCausalLM.from_pretrained(model_id, device_map="auto")
|
||||
|
||||
input_ids = tokenizer("Write me a poem about Machine Learning.", return_tensors="pt").to(model.device)
|
||||
|
||||
outputs = model.generate(**input_ids, max_new_tokens=100)
|
||||
text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
|
||||
print(text)
|
||||
```py
|
||||
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||||
|
||||
visualizer = AttentionMaskVisualizer("google/gemma-3-4b-it")
|
||||
visualizer("<img>What is shown in this image?")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Use [`Gemma3ForConditionalGeneration`] for image-and-text and image-only inputs.
|
||||
- Gemma 3 supports multiple input images, but make sure the images are correctly batched before passing them to the processor. Each batch should be a list of one or more images.
|
||||
|
||||
```py
|
||||
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
|
||||
url_cat = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
|
||||
messages =[
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{"type": "text", "text": "You are a helpful assistant."}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": url_cow},
|
||||
{"type": "image", "url": url_cat},
|
||||
{"type": "text", "text": "Which image is cuter?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
```
|
||||
- Text passed to the processor should have a `<start_of_image>` token wherever an image should be inserted.
|
||||
- The processor has its own [`~ProcessorMixin.apply_chat_template`] method to convert chat messages to model inputs.
|
||||
- By default, images aren't cropped and only the base image is forwarded to the model. In high resolution images or images with non-square aspect ratios, artifacts can result because the vision encoder uses a fixed resolution of 896x896. To prevent these artifacts and improve performance during inference, set `do_pan_and_scan=True` to crop the image into multiple smaller patches and concatenate them with the base image embedding. You can disable pan and scan for faster inference.
|
||||
|
||||
```diff
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
add_generation_prompt=True,
|
||||
+ do_pan_and_scan=True,
|
||||
).to("cuda")
|
||||
```
|
||||
- For text-only inputs, use [`AutoModelForCausalLM`] instead to skip loading the vision components and save resources.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/gemma-3-1b-pt",
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"google/gemma-3-1b-pt",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Gemma3ImageProcessor
|
||||
|
||||
|
@ -14,79 +14,111 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# LLaMA
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Llama
|
||||
|
||||
The LLaMA model was proposed in [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a collection of foundation language models ranging from 7B to 65B parameters.
|
||||
[Llama](https://huggingface.co/papers/2302.13971) is a family of large language models ranging from 7B to 65B parameters. These models are focused on efficient inference (important for serving language models) by training a smaller model on more tokens rather than training a larger model on fewer tokens. The Llama model is based on the GPT architecture, but it uses pre-normalization to improve training stability, replaces ReLU with SwiGLU to improve performance, and replaces absolute positional embeddings with rotary positional embeddings (RoPE) to better handle longer sequence lengths.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original Llama checkpoints under the [Huggy Llama](https://huggingface.co/huggyllama) organization.
|
||||
|
||||
*We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community. *
|
||||
> [!TIP]
|
||||
> Click on the Llama models in the right sidebar for more examples of how to apply Llama to different language tasks.
|
||||
|
||||
This model was contributed by [zphang](https://huggingface.co/zphang) with contributions from [BlackSamorez](https://huggingface.co/BlackSamorez). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama).
|
||||
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
|
||||
|
||||
## Usage tips
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- Weights for the LLaMA models can be obtained from by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form)
|
||||
- After downloading the weights, they will need to be converted to the Hugging Face Transformers format using the [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py). The script can be called with the following (example) command:
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="huggyllama/llama-7b",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"huggyllama/llama-7b",
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"huggyllama/llama-7b",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
||||
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model huggyllama/llama-7b --device 0
|
||||
```
|
||||
|
||||
- After conversion, the model and tokenizer can be loaded via:
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
```python
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
|
||||
model = LlamaForCausalLM.from_pretrained("/output/path")
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
# pip install torchao
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"huggyllama/llama-30b",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-30b")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions
|
||||
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 65B model, it's thus 130GB of RAM needed.
|
||||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||||
|
||||
- The LLaMA tokenizer is a BPE model based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string.
|
||||
```py
|
||||
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||||
|
||||
This model was contributed by [zphang](https://huggingface.co/zphang) with contributions from [BlackSamorez](https://huggingface.co/BlackSamorez). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama). The Flax version of the implementation was contributed by [afmck](https://huggingface.co/afmck) with the code in the implementation based on Hugging Face's Flax GPT-Neo.
|
||||
visualizer = AttentionMaskVisualizer("huggyllama/llama-7b")
|
||||
visualizer("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
Based on the original LLaMA model, Meta AI has released some follow-up works:
|
||||
|
||||
- **Llama2**: Llama2 is an improved version of Llama with some architectural tweaks (Grouped Query Attention), and is pre-trained on 2Trillion tokens. Refer to the documentation of Llama2 which can be found [here](llama2).
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LLaMA. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
<PipelineTag pipeline="text-classification"/>
|
||||
|
||||
- A [notebook](https://colab.research.google.com/github/bigscience-workshop/petals/blob/main/examples/prompt-tuning-sst2.ipynb#scrollTo=f04ba4d2) on how to use prompt tuning to adapt the LLaMA model for text classification task. 🌎
|
||||
|
||||
<PipelineTag pipeline="question-answering"/>
|
||||
|
||||
- [StackLLaMA: A hands-on guide to train LLaMA with RLHF](https://huggingface.co/blog/stackllama#stackllama-a-hands-on-guide-to-train-llama-with-rlhf), a blog post about how to train LLaMA to answer questions on [Stack Exchange](https://stackexchange.com/) with RLHF.
|
||||
|
||||
⚗️ Optimization
|
||||
- A [notebook](https://colab.research.google.com/drive/1SQUXq1AMZPSLD4mk3A3swUIc6Y2dclme?usp=sharing) on how to fine-tune LLaMA model using xturing library on GPU which has limited memory. 🌎
|
||||
|
||||
⚡️ Inference
|
||||
- A [notebook](https://colab.research.google.com/github/DominguesM/alpaca-lora-ptbr-7b/blob/main/notebooks/02%20-%20Evaluate.ipynb) on how to run the LLaMA Model using PeftModel from the 🤗 PEFT library. 🌎
|
||||
- A [notebook](https://colab.research.google.com/drive/1l2GiSSPbajVyp2Nk3CFT4t3uH6-5TiBe?usp=sharing) on how to load a PEFT adapter LLaMA model with LangChain. 🌎
|
||||
|
||||
🚀 Deploy
|
||||
- A [notebook](https://colab.research.google.com/github/lxe/simple-llama-finetuner/blob/master/Simple_LLaMA_FineTuner.ipynb#scrollTo=3PM_DilAZD8T) on how to fine-tune LLaMA model using LoRA method via the 🤗 PEFT library with intuitive UI. 🌎
|
||||
- A [notebook](https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-open-llama.ipynb) on how to deploy Open-LLaMA model for text generation on Amazon SageMaker. 🌎
|
||||
- The tokenizer is a byte-pair encoding model based on [SentencePiece](https://github.com/google/sentencepiece). During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.
|
||||
|
||||
## LlamaConfig
|
||||
|
||||
|
@ -14,97 +14,125 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Llama2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Llama 2
|
||||
|
||||
The Llama2 model was proposed in [LLaMA: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. It is a collection of foundation language models ranging from 7B to 70B parameters, with checkpoints finetuned for chat application!
|
||||
[Llama 2](https://huggingface.co/papers/2307.09288) is a family of large language models, Llama 2 and Llama 2-Chat, available in 7B, 13B, and 70B parameters. The Llama 2 model mostly keeps the same architecture as [Llama](./llama), but it is pretrained on more tokens, doubles the context length, and uses grouped-query attention (GQA) in the 70B model to improve inference.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
Llama 2-Chat is trained with supervised fine-tuning (SFT), and reinforcement learning with human feedback (RLHF) - rejection sampling and proximal policy optimization (PPO) - is applied to the fine-tuned model to align the chat model with human preferences.
|
||||
|
||||
*In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.*
|
||||
You can find all the original Llama 2 checkpoints under the [Llama 2 Family](https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b) collection.
|
||||
|
||||
Checkout all Llama2 model checkpoints [here](https://huggingface.co/models?search=llama2).
|
||||
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ) with contributions from [Lysandre Debut](https://huggingface.co/lysandre). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama).
|
||||
> [!TIP]
|
||||
> Click on the Llama 2 models in the right sidebar for more examples of how to apply Llama to different language tasks.
|
||||
|
||||
## Usage tips
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and how to chat with Llama 2-Chat from the command line.
|
||||
|
||||
<Tip warning={true}>
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
The `Llama2` models were trained using `bfloat16`, but the original inference uses `float16`. The checkpoints uploaded on the Hub use `torch_dtype = 'float16'`, which will be
|
||||
used by the `AutoModel` API to cast the checkpoints from `torch.float32` to `torch.float16`.
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
The `dtype` of the online weights is mostly irrelevant unless you are using `torch_dtype="auto"` when initializing a model using `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`. The reason is that the model will first be downloaded ( using the `dtype` of the checkpoints online), then it will be casted to the default `dtype` of `torch` (becomes `torch.float32`), and finally, if there is a `torch_dtype` provided in the config, it will be used.
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="meta-llama/Llama-2-7b-hf",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
Training the model in `float16` is not recommended and is known to produce `nan`; as such, the model should be trained in `bfloat16`.
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
</Tip>
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
Tips:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"meta-llama/Llama-2-7b-hf",
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"meta-llama/Llama-2-7b-hf",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
- Weights for the Llama2 models can be obtained by filling out [this form](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
|
||||
- The architecture is very similar to the first Llama, with the addition of Grouped Query Attention (GQA) following this [paper](https://arxiv.org/pdf/2305.13245.pdf)
|
||||
- Setting `config.pretraining_tp` to a value different than 1 will activate the more accurate but slower computation of the linear layers, which should better match the original logits.
|
||||
- The original model uses `pad_id = -1` which means that there is no padding token. We can't have the same logic, make sure to add a padding token using `tokenizer.add_special_tokens({"pad_token":"<pad>"})` and resize the token embedding accordingly. You should also set the `model.config.pad_token_id`. The `embed_tokens` layer of the model is initialized with `self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.config.padding_idx)`, which makes sure that encoding the padding token will output zeros, so passing it when initializing is recommended.
|
||||
- After filling out the form and gaining access to the model checkpoints, you should be able to use the already converted checkpoints. Otherwise, if you are converting your own model, feel free to use the [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py). The script can be called with the following (example) command:
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
||||
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
||||
transformers-cli chat --model_name_or_path meta-llama/Llama-2-7b-chat-hf --torch_dtype auto --attn_implementation flash_attention_2
|
||||
```
|
||||
|
||||
- After conversion, the model and tokenizer can be loaded via:
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
```python
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
|
||||
model = LlamaForCausalLM.from_pretrained("/output/path")
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
# pip install torchao
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"meta-llama/Llama-2-13b-hf",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-13b-hf")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions
|
||||
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 75B model, it's thus 145GB of RAM needed.
|
||||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||||
|
||||
- The LLaMA tokenizer is a BPE model based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string.
|
||||
```py
|
||||
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||||
|
||||
- When using Flash Attention 2 via `attn_implementation="flash_attention_2"`, don't pass `torch_dtype` to the `from_pretrained` class method and use Automatic Mixed-Precision training. When using `Trainer`, it is simply specifying either `fp16` or `bf16` to `True`. Otherwise, make sure you are using `torch.autocast`. This is required because the Flash Attention only support `fp16` and `bf16` data type.
|
||||
visualizer = AttentionMaskVisualizer("meta-llama/Llama-2-7b-hf")
|
||||
visualizer("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
## Resources
|
||||
- Setting `config.pretraining_tp` to a value besides `1` activates a more accurate but slower computation of the linear layers. This matches the original logits better.
|
||||
- The original model uses `pad_id = -1` to indicate a padding token. The Transformers implementation requires adding a padding token and resizing the token embedding accordingly.
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LLaMA2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
- [Llama 2 is here - get it on Hugging Face](https://huggingface.co/blog/llama2), a blog post about Llama 2 and how to use it with 🤗 Transformers and 🤗 PEFT.
|
||||
- [LLaMA 2 - Every Resource you need](https://www.philschmid.de/llama-2), a compilation of relevant resources to learn about LLaMA 2 and how to get started quickly.
|
||||
|
||||
<PipelineTag pipeline="text-generation"/>
|
||||
|
||||
- A [notebook](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing) on how to fine-tune Llama 2 in Google Colab using QLoRA and 4-bit precision. 🌎
|
||||
- A [notebook](https://colab.research.google.com/drive/134o_cXcMe_lsvl15ZE_4Y75Kstepsntu?usp=sharing) on how to fine-tune the "Llama-v2-7b-guanaco" model with 4-bit QLoRA and generate Q&A datasets from PDFs. 🌎
|
||||
|
||||
<PipelineTag pipeline="text-classification"/>
|
||||
|
||||
- A [notebook](https://colab.research.google.com/drive/1ggaa2oRFphdBmqIjSEbnb_HGkcIRC2ZB?usp=sharing) on how to fine-tune the Llama 2 model with QLoRa, TRL, and Korean text classification dataset. 🌎🇰🇷
|
||||
|
||||
⚗️ Optimization
|
||||
- [Fine-tune Llama 2 with DPO](https://huggingface.co/blog/dpo-trl), a guide to using the TRL library's DPO method to fine tune Llama 2 on a specific dataset.
|
||||
- [Extended Guide: Instruction-tune Llama 2](https://www.philschmid.de/instruction-tune-llama-2), a guide to training Llama 2 to generate instructions from inputs, transforming the model from instruction-following to instruction-giving.
|
||||
- A [notebook](https://colab.research.google.com/drive/1SYpgFpcmtIUzdE7pxqknrM4ArCASfkFQ?usp=sharing) on how to fine-tune the Llama 2 model on a personal computer using QLoRa and TRL. 🌎
|
||||
|
||||
⚡️ Inference
|
||||
- A [notebook](https://colab.research.google.com/drive/1TC56ArKerXUpbgRy5vM3woRsbTEVNq7h?usp=sharing) on how to quantize the Llama 2 model using GPTQ from the AutoGPTQ library. 🌎
|
||||
- A [notebook](https://colab.research.google.com/drive/1X1z9Q6domMKl2CnEM0QGHNwidLfR4dW2?usp=sharing) on how to run the Llama 2 Chat Model with 4-bit quantization on a local computer or Google Colab. 🌎
|
||||
|
||||
🚀 Deploy
|
||||
- [Fine-tune LLaMA 2 (7-70B) on Amazon SageMaker](https://www.philschmid.de/sagemaker-llama2-qlora), a complete guide from setup to QLoRA fine-tuning and deployment on Amazon SageMaker.
|
||||
- [Deploy Llama 2 7B/13B/70B on Amazon SageMaker](https://www.philschmid.de/sagemaker-llama-llm), a guide on using Hugging Face's LLM DLC container for secure and scalable deployment.
|
||||
```py
|
||||
tokenizer.add_special_tokens({"pad_token":"<pad>"})
|
||||
# update model config with padding token
|
||||
model.config.pad_token_id
|
||||
```
|
||||
- It is recommended to initialize the `embed_tokens` layer with the following code to ensure encoding the padding token outputs zeros.
|
||||
|
||||
```py
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.config.padding_idx)
|
||||
```
|
||||
- The tokenizer is a byte-pair encoding model based on [SentencePiece](https://github.com/google/sentencepiece). During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.
|
||||
- Don't use the `torch_dtype` parameter in [`~AutoModel.from_pretrained`] if you're using FlashAttention-2 because it only supports fp16 or bf16. You should use [Automatic Mixed Precision](https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html), set fp16 or bf16 to `True` if using [`Trainer`], or use [torch.autocast](https://pytorch.org/docs/stable/amp.html#torch.autocast).
|
||||
|
||||
## LlamaConfig
|
||||
|
||||
|
@ -14,89 +14,153 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# PaliGemma
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# PaliGemma
|
||||
|
||||
The PaliGemma model was proposed in [PaliGemma – Google's Cutting-Edge Open Vision Language Model](https://huggingface.co/blog/paligemma) by Google. It is a 3B vision-language model composed by a [SigLIP](siglip) vision encoder and a [Gemma](gemma) language decoder linked by a multimodal linear projection. It cuts an image into a fixed number of VIT tokens and prepends it to an optional prompt. One particularity is that the model uses full block attention on all the image tokens plus the input text tokens. It comes in 3 resolutions, 224x224, 448x448 and 896x896 with 3 base models, with 55 fine-tuned versions for different tasks, and 2 mix models.
|
||||
[PaliGemma](https://huggingface.co/papers/2407.07726) is a family of vision-language models (VLMs), combining [SigLIP](./siglip) with the [Gemma](./gemma) 2B model. PaliGemma is available in 3B, 10B, and 28B parameters. The main purpose of PaliGemma is to provide an adaptable base VLM that is easy to transfer to other tasks. The SigLIP vision encoder is a "shape optimized" contrastively pretrained [ViT](./vit) that converts an image into a sequence of tokens and prepended to an optional prompt. The Gemma 2B model is used as the decoder. PaliGemma uses full attention on all image and text tokens to maximize its capacity.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/paligemma/paligemma_arch.png"
|
||||
alt="drawing" width="600"/>
|
||||
[PaliGemma 2](https://huggingface.co/papers/2412.03555) improves on the first model by using Gemma 2 (2B, 9B, and 27B parameter variants) as the decoder. These are available as **pt** or **mix** variants. The **pt** checkpoints are intended for further fine-tuning and the **mix** checkpoints are ready for use out of the box.
|
||||
|
||||
<small> PaliGemma architecture. Taken from the <a href="https://huggingface.co/blog/paligemma">blog post.</a> </small>
|
||||
You can find all the original PaliGemma checkpoints under the [PaliGemma](https://huggingface.co/collections/google/paligemma-release-6643a9ffbf57de2ae0448dda), [PaliGemma 2](https://huggingface.co/collections/google/paligemma-2-release-67500e1e1dbfdd4dee27ba48), and [PaliGemma 2 Mix](https://huggingface.co/collections/google/paligemma-2-mix-67ac6a251aaf3ee73679dcc4) collections.
|
||||
|
||||
This model was contributed by [Molbap](https://huggingface.co/Molbap).
|
||||
> [!TIP]
|
||||
> Click on the PaliGemma models in the right sidebar for more examples of how to apply PaliGemma to different vision and language tasks.
|
||||
|
||||
## Usage tips
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
- PaliGemma is not meant for conversational use, and it works best when fine-tuning to a specific use case. Some downstream tasks on which PaliGemma can be fine-tuned include image captioning, visual question answering (VQA), object detection, referring expression segmentation and document understanding.
|
||||
- One can use `PaliGemmaProcessor` to prepare images, text and optional labels for the model. When fine-tuning a PaliGemma model, the `suffix` argument can be passed to the processor which creates the `labels` for the model:
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
prompt = "What is on the flower?"
|
||||
answer = "a bee"
|
||||
inputs = processor(images=raw_image, text=prompt, suffix=answer, return_tensors="pt")
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="google/paligemma2-3b-mix-224",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
pipeline(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
text="What is in this image?"
|
||||
)
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
The model can accept a single or multiple images. According to the [paper](https://arxiv.org/abs/2407.07726v1), the checkpoint PaliGemma can transfer to tasks which take multiple images as input. NLVR2 is one such task, which asks one question about two images, and requires looking at both to give the correct answer. Here's an example code for single and multi image inference.
|
||||
|
||||
### Single-image Inference
|
||||
|
||||
```python
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
||||
|
||||
model_id = "google/paligemma-3b-mix-224"
|
||||
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
|
||||
prompt = "What is on the flower?"
|
||||
image_file = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg?download=true"
|
||||
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
||||
inputs = processor(raw_image, prompt, return_tensors="pt")
|
||||
output = model.generate(**inputs, max_new_tokens=20)
|
||||
|
||||
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])
|
||||
```
|
||||
|
||||
### Multi-image Inference
|
||||
|
||||
```python
|
||||
model_id = "google/paligemma-3b-ft-nlvr2-448" # checkpoint tuned for multiple images
|
||||
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
||||
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
||||
|
||||
prompt = "answer en Which of the two pictures shows a snowman, first or second?"
|
||||
stop_sign_image = Image.open(
|
||||
requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw
|
||||
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
||||
"google/paligemma2-3b-mix-224",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
snow_image = Image.open(
|
||||
requests.get(
|
||||
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg", stream=True
|
||||
).raw
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"google/paligemma2-3b-mix-224",
|
||||
)
|
||||
|
||||
inputs = processor(images=[[snow_image, stop_sign_image]], text=prompt, return_tensors="pt")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=20)
|
||||
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])
|
||||
prompt = "What is in this image?"
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Resources
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with PaliGemma. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
- A blog post introducing all the features of PaliGemma can be found [here](https://huggingface.co/blog/paligemma).
|
||||
- Demo notebooks on how to fine-tune PaliGemma for VQA with the Trainer API along with inference can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/paligemma).
|
||||
- Demo notebooks on how to fine-tune PaliGemma on a custom dataset (receipt image -> JSON) along with inference can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/PaliGemma). 🌎
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
# pip install torchao
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import TorchAoConfig, AutoProcessor, PaliGemmaForConditionalGeneration
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
||||
"google/paligemma2-28b-mix-224",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"google/paligemma2-28b-mix-224",
|
||||
)
|
||||
|
||||
prompt = "What is in this image?"
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||||
|
||||
```py
|
||||
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||||
|
||||
visualizer = AttentionMaskVisualizer("google/paligemma2-3b-mix-224")
|
||||
visualizer("<img> What is in this image?")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- PaliGemma is not a conversational model and works best when fine-tuned for specific downstream tasks such as image captioning, visual question answering (VQA), object detection, and document understanding.
|
||||
- [`PaliGemmaProcessor`] can prepare images, text, and optional labels for the model. Pass the `suffix` parameter to the processor to create labels for the model during fine-tuning.
|
||||
|
||||
```py
|
||||
prompt = "What is in this image?"
|
||||
answer = "a pallas cat"
|
||||
inputs = processor(images=image, text=prompt, suffix=answer, return_tensors="pt")
|
||||
```
|
||||
- PaliGemma can support multiple input images if it is fine-tuned to accept multiple images. For example, the [NLVR2](https://huggingface.co/google/paligemma-3b-ft-nlvr2-448) checkpoint supports multiple images. Pass the images as a list to the processor.
|
||||
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import TorchAoConfig, AutoProcessor, PaliGemmaForConditionalGeneration
|
||||
|
||||
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-nlvr2-448")
|
||||
processor = AutoProcessor.from_pretrained("google/paligemma-3b-ft-nlvr2-448")
|
||||
|
||||
prompt = "Are these two images the same?"
|
||||
cat_image = Image.open(
|
||||
requests.get("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", stream=True).raw
|
||||
)
|
||||
cow_image = Image.open(
|
||||
requests.get(
|
||||
"https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4=", stream=True
|
||||
).raw
|
||||
)
|
||||
|
||||
inputs = processor(images=[[cat_image, cow_image]], text=prompt, return_tensors="pt")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=20, cache_implementation="static")
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## PaliGemmaConfig
|
||||
|
||||
|
@ -14,144 +14,83 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Vision Transformer (ViT)
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Vision Transformer (ViT)
|
||||
|
||||
The Vision Transformer (ViT) model was proposed in [An Image is Worth 16x16 Words: Transformers for Image Recognition
|
||||
at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
|
||||
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
|
||||
Uszkoreit, Neil Houlsby. It's the first paper that successfully trains a Transformer encoder on ImageNet, attaining
|
||||
very good results compared to familiar convolutional architectures.
|
||||
[Vision Transformer (ViT)](https://huggingface.co/papers/2010.11929) is a transformer adapted for computer vision tasks. An image is split into smaller fixed-sized patches which are treated as a sequence of tokens, similar to words for NLP tasks. ViT requires less resources to pretrain compared to convolutional architectures and its performance on large datasets can be transferred to smaller downstream tasks.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original ViT checkpoints under the [Google](https://huggingface.co/google?search_models=vit) organization.
|
||||
|
||||
*While the Transformer architecture has become the de-facto standard for natural language processing tasks, its
|
||||
applications to computer vision remain limited. In vision, attention is either applied in conjunction with
|
||||
convolutional networks, or used to replace certain components of convolutional networks while keeping their overall
|
||||
structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to
|
||||
sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of
|
||||
data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.),
|
||||
Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring
|
||||
substantially fewer computational resources to train.*
|
||||
> [!TIP]
|
||||
> Click on the ViT models in the right sidebar for more examples of how to apply ViT to different computer vision tasks.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vit_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<small> ViT architecture. Taken from the <a href="https://arxiv.org/abs/2010.11929">original paper.</a> </small>
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
Following the original Vision Transformer, some follow-up works have been made:
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
- [DeiT](deit) (Data-efficient Image Transformers) by Facebook AI. DeiT models are distilled vision transformers.
|
||||
The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into [`ViTModel`] or
|
||||
[`ViTForImageClassification`]. There are 4 variants available (in 3 different sizes): *facebook/deit-tiny-patch16-224*,
|
||||
*facebook/deit-small-patch16-224*, *facebook/deit-base-patch16-224* and *facebook/deit-base-patch16-384*. Note that one should
|
||||
use [`DeiTImageProcessor`] in order to prepare images for the model.
|
||||
|
||||
- [BEiT](beit) (BERT pre-training of Image Transformers) by Microsoft Research. BEiT models outperform supervised pre-trained
|
||||
vision transformers using a self-supervised method inspired by BERT (masked image modeling) and based on a VQ-VAE.
|
||||
|
||||
- DINO (a method for self-supervised training of Vision Transformers) by Facebook AI. Vision Transformers trained using
|
||||
the DINO method show very interesting properties not seen with convolutional models. They are capable of segmenting
|
||||
objects, without having ever been trained to do so. DINO checkpoints can be found on the [hub](https://huggingface.co/models?other=dino).
|
||||
|
||||
- [MAE](vit_mae) (Masked Autoencoders) by Facebook AI. By pre-training Vision Transformers to reconstruct pixel values for a high portion
|
||||
(75%) of masked patches (using an asymmetric encoder-decoder architecture), the authors show that this simple method outperforms
|
||||
supervised pre-training after fine-tuning.
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code (written in JAX) can be
|
||||
found [here](https://github.com/google-research/vision_transformer).
|
||||
|
||||
Note that we converted the weights from Ross Wightman's [timm library](https://github.com/rwightman/pytorch-image-models),
|
||||
who already converted the weights from JAX to PyTorch. Credits go to him!
|
||||
|
||||
## Usage tips
|
||||
|
||||
- To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches,
|
||||
which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image, which can be
|
||||
used for classification. The authors also add absolute position embeddings, and feed the resulting sequence of
|
||||
vectors to a standard Transformer encoder.
|
||||
- As the Vision Transformer expects each image to be of the same size (resolution), one can use
|
||||
[`ViTImageProcessor`] to resize (or rescale) and normalize images for the model.
|
||||
- Both the patch resolution and image resolution used during pre-training or fine-tuning are reflected in the name of
|
||||
each checkpoint. For example, `google/vit-base-patch16-224` refers to a base-sized architecture with patch
|
||||
resolution of 16x16 and fine-tuning resolution of 224x224. All checkpoints can be found on the [hub](https://huggingface.co/models?search=vit).
|
||||
- The available checkpoints are either (1) pre-trained on [ImageNet-21k](http://www.image-net.org/) (a collection of
|
||||
14 million images and 21k classes) only, or (2) also fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/) (also referred to as ILSVRC 2012, a collection of 1.3 million
|
||||
images and 1,000 classes).
|
||||
- The Vision Transformer was pre-trained using a resolution of 224x224. During fine-tuning, it is often beneficial to
|
||||
use a higher resolution than pre-training [(Touvron et al., 2019)](https://arxiv.org/abs/1906.06423), [(Kolesnikov
|
||||
et al., 2020)](https://arxiv.org/abs/1912.11370). In order to fine-tune at higher resolution, the authors perform
|
||||
2D interpolation of the pre-trained position embeddings, according to their location in the original image.
|
||||
- The best results are obtained with supervised pre-training, which is not the case in NLP. The authors also performed
|
||||
an experiment with a self-supervised pre-training objective, namely masked patched prediction (inspired by masked
|
||||
language modeling). With this approach, the smaller ViT-B/16 model achieves 79.9% accuracy on ImageNet, a significant
|
||||
improvement of 2% to training from scratch, but still 4% behind supervised pre-training.
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```
|
||||
from transformers import ViTForImageClassification
|
||||
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224", attn_implementation="sdpa", torch_dtype=torch.float16)
|
||||
...
|
||||
pipeline = pipeline(
|
||||
task="image-classification",
|
||||
model="google/vit-base-patch16-224",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
||||
```
|
||||
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with `float32` and `google/vit-base-patch16-224` model, we saw the following speedups during inference.
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
||||
|
||||
| Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) |
|
||||
|--------------|-------------------------------------------|-------------------------------------------|------------------------------|
|
||||
| 1 | 7 | 6 | 1.17 |
|
||||
| 2 | 8 | 6 | 1.33 |
|
||||
| 4 | 8 | 6 | 1.33 |
|
||||
| 8 | 8 | 6 | 1.33 |
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"google/vit-base-patch16-224",
|
||||
use_fast=True,
|
||||
)
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"google/vit-base-patch16-224",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
||||
|
||||
## Resources
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
predicted_class_id = logits.argmax(dim=-1).item()
|
||||
|
||||
Demo notebooks regarding inference as well as fine-tuning ViT on custom data can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer).
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
class_labels = model.config.id2label
|
||||
predicted_class_label = class_labels[predicted_class_id]
|
||||
print(f"The predicted class label is: {predicted_class_label}")
|
||||
```
|
||||
|
||||
`ViTForImageClassification` is supported by:
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
- A blog post on how to [Fine-Tune ViT for Image Classification with Hugging Face Transformers](https://huggingface.co/blog/fine-tune-vit)
|
||||
- A blog post on [Image Classification with Hugging Face Transformers and `Keras`](https://www.philschmid.de/image-classification-huggingface-transformers-keras)
|
||||
- A notebook on [Fine-tuning for Image Classification with Hugging Face Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb)
|
||||
- A notebook on how to [Fine-tune the Vision Transformer on CIFAR-10 with the Hugging Face Trainer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb)
|
||||
- A notebook on how to [Fine-tune the Vision Transformer on CIFAR-10 with PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb)
|
||||
## Notes
|
||||
|
||||
⚗️ Optimization
|
||||
|
||||
- A blog post on how to [Accelerate Vision Transformer (ViT) with Quantization using Optimum](https://www.philschmid.de/optimizing-vision-transformer)
|
||||
|
||||
⚡️ Inference
|
||||
|
||||
- A notebook on [Quick demo: Vision Transformer (ViT) by Google Brain](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Quick_demo_of_HuggingFace_version_of_Vision_Transformer_inference.ipynb)
|
||||
|
||||
🚀 Deploy
|
||||
|
||||
- A blog post on [Deploying Tensorflow Vision Models in Hugging Face with TF Serving](https://huggingface.co/blog/tf-serving-vision)
|
||||
- A blog post on [Deploying Hugging Face ViT on Vertex AI](https://huggingface.co/blog/deploy-vertex-ai)
|
||||
- A blog post on [Deploying Hugging Face ViT on Kubernetes with TF Serving](https://huggingface.co/blog/deploy-tfserving-kubernetes)
|
||||
- The best results are obtained with supervised pretraining, and during fine-tuning, it may be better to use images with a resolution higher than 224x224.
|
||||
- Use [`ViTImageProcessorFast`] to resize (or rescale) and normalize images to the expected size.
|
||||
- The patch and image resolution are reflected in the checkpoint name. For example, google/vit-base-patch16-224, is the **base-sized** architecture with a patch resolution of 16x16 and fine-tuning resolution of 224x224.
|
||||
|
||||
## ViTConfig
|
||||
|
||||
@ -172,9 +111,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] ViTImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
## ViTModel
|
||||
|
||||
[[autodoc]] ViTModel
|
||||
@ -190,9 +126,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] ViTForImageClassification
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
## TFViTModel
|
||||
|
||||
[[autodoc]] TFViTModel
|
||||
@ -203,9 +136,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] TFViTForImageClassification
|
||||
- call
|
||||
|
||||
</tf>
|
||||
<jax>
|
||||
|
||||
## FlaxVitModel
|
||||
|
||||
[[autodoc]] FlaxViTModel
|
||||
@ -215,6 +145,3 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
|
||||
[[autodoc]] FlaxViTForImageClassification
|
||||
- __call__
|
||||
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
|
@ -14,152 +14,86 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Whisper
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Whisper
|
||||
|
||||
The Whisper model was proposed in [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
|
||||
[Whisper](https://hf.co/papers/2212.04356) is a encoder-decoder (sequence-to-sequence) transformer pretrained on 680,000 hours of labeled audio data. This amount of pretraining data enables zero-shot performance on audio tasks in English and many other languages. The decoder allows Whisper to map the encoders learned speech representations to useful outputs, such as text, without additional fine-tuning. Whisper just works out of the box.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original Whisper checkpoints under the [Whisper](https://huggingface.co/collections/openai/whisper-release-6501bba2cf999715fd953013) collection.
|
||||
|
||||
*We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zeroshot transfer setting without the need for any finetuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.*
|
||||
> [!TIP]
|
||||
> Click on the Whisper models in the right sidebar for more examples of how to apply Whisper to different audio tasks.
|
||||
|
||||
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts).
|
||||
The original code can be found [here](https://github.com/openai/whisper).
|
||||
The example below demonstrates how to automatically transcribe speech into text with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
## Quick usage
|
||||
|
||||
You can run Whisper in less than 4 lines of code and transcribe in less than a minute!
|
||||
|
||||
```python
|
||||
# pip install transformers torch
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
whisper = pipeline("automatic-speech-recognition", "openai/whisper-large-v3", torch_dtype=torch.float16, device="cuda:0")
|
||||
|
||||
transcription = whisper("<audio_file.mp3>")
|
||||
|
||||
print(transcription["text"])
|
||||
pipeline = pipeline(
|
||||
task="automatic-speech-recognition",
|
||||
model="openai/whisper-large-v3-turbo",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
|
||||
```
|
||||
|
||||
Voila! You can swap the model with any [Whisper checkpoints](https://huggingface.co/models?other=whisper&sort=downloads) on the Hugging Face Hub with the same pipeline based on your needs.
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
Bonus: You can replace `"cuda"` with `"mps"` to make it seamlessly work on Macs.
|
||||
```py
|
||||
# pip install datasets
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoProcessor, WhisperForConditionalGeneration
|
||||
|
||||
## Usage tips
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"openai/whisper-large-v3-turbo",
|
||||
)
|
||||
model = WhisperForConditionalGeneration.from_pretrained(
|
||||
"openai/whisper-large-v3-turbo",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
).to("cuda")
|
||||
|
||||
- The model usually performs well without requiring any finetuning.
|
||||
- The architecture follows a classic encoder-decoder architecture, which means that it relies on the [`~generation.GenerationMixin.generate`] function for inference.
|
||||
- One can use [`WhisperProcessor`] to prepare audio for the model, and decode the predicted ID's back into text.
|
||||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||||
audio_sample = ds[0]["audio"]
|
||||
|
||||
- To convert the model and the processor, we recommend using the following:
|
||||
input_features = processor(
|
||||
audio_sample["array"],
|
||||
sampling_rate=audio_sample["sampling_rate"],
|
||||
return_tensors="pt"
|
||||
).input_features
|
||||
input_features = input_features.to("cuda", dtype=torch.float16)
|
||||
|
||||
```bash
|
||||
python src/transformers/models/whisper/convert_openai_to_hf.py --checkpoint_path "" --pytorch_dump_folder_path "Arthur/whisper-3" --convert_preprocessor True
|
||||
```
|
||||
The script will automatically determine all necessary parameters from the OpenAI checkpoint. A `tiktoken` library needs to be installed
|
||||
to perform the conversion of the OpenAI tokenizer to the `tokenizers` version.
|
||||
|
||||
## Inference
|
||||
|
||||
Here is a step-by-step guide to transcribing an audio sample using a pre-trained Whisper model:
|
||||
|
||||
```python
|
||||
>>> from datasets import load_dataset
|
||||
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
||||
|
||||
>>> # Select an audio file and read it:
|
||||
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||||
>>> audio_sample = ds[0]["audio"]
|
||||
|
||||
>>> # Load the Whisper model in Hugging Face format:
|
||||
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
|
||||
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
||||
|
||||
>>> # Use the model and processor to transcribe the audio:
|
||||
>>> input_features = processor(
|
||||
... audio_sample["array"], sampling_rate=audio_sample["sampling_rate"], return_tensors="pt"
|
||||
... ).input_features
|
||||
|
||||
>>> # Generate token ids
|
||||
>>> predicted_ids = model.generate(input_features)
|
||||
|
||||
>>> # Decode token ids to text
|
||||
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
|
||||
>>> transcription[0]
|
||||
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
|
||||
predicted_ids = model.generate(input_features, cache_implementation="static")
|
||||
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
transcription[0]
|
||||
```
|
||||
|
||||
Whisper is compatible with the following optimisations for both short and long-form generation:
|
||||
- [PyTorch Scaled Dot Product Attention (SDPA)](../perf_infer_gpu_one#pytorch-scaled-dot-product-attention): flash attention and memory-efficient attention kernels. Enabled by default for `torch>=2.1.1`.
|
||||
- [Flash Attention 2](../perf_infer_gpu_one#flashattention-2): improved implementation of flash attention through better parallelism and work partitioning.
|
||||
- [torch.compile](../llm_optims#static-kv-cache-and-torchcompile): JIT-compile the forward pass to dispatch to efficient fused kernels.
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
As an example, the following codesnippet enables SDPA and `torch.compile` for up to 5x faster inference:
|
||||
## Notes
|
||||
|
||||
```python
|
||||
>>> from datasets import load_dataset
|
||||
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
||||
|
||||
>>> # Select an audio file and read it:
|
||||
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||||
>>> audio_sample = ds[0]["audio"]
|
||||
|
||||
>>> # Load the Whisper model with SDPA attention
|
||||
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
|
||||
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", attn_implementation="sdpa")
|
||||
|
||||
>>> # Enable static cache and compile the forward pass
|
||||
>>> model.generation_config.cache_implementation = "static"
|
||||
>>> model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
||||
|
||||
>>> # Use the model and processor to transcribe the audio:
|
||||
>>> input_features = processor(
|
||||
... audio_sample["array"], sampling_rate=audio_sample["sampling_rate"], return_tensors="pt"
|
||||
... ).input_features
|
||||
|
||||
>>> # Compile the forward pass
|
||||
>>> for _ in range(2):
|
||||
>>> model.generate(input_features)
|
||||
|
||||
>>> # Generate token ids using compiled graph (fast!)
|
||||
>>> predicted_ids = model.generate(input_features)
|
||||
|
||||
>>> # Decode token ids to text
|
||||
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
|
||||
>>> transcription[0]
|
||||
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
|
||||
```
|
||||
|
||||
For more details on each optimisation, refer to the documentation linked above.
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Whisper. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
- [Fine-tune Whisper](https://huggingface.co/blog/fine-tune-whisper) on your own dataset for better downstream performance.
|
||||
- [Distil-Whisper](https://huggingface.co/distil-whisper): Upto 6x faster, 2x smaller distilled Whisper models for English. We release the [model checkpoints](https://huggingface.co/distil-whisper), and [distillation code](https://github.com/huggingface/distil-whisper).
|
||||
- A fork with a script to [convert a Whisper model in Hugging Face format to OpenAI format](https://github.com/zuazo-forks/transformers/blob/convert_hf_to_openai/src/transformers/models/whisper/convert_hf_to_openai.py). 🌎
|
||||
Usage example:
|
||||
```bash
|
||||
pip install -U openai-whisper
|
||||
python convert_hf_to_openai.py \
|
||||
--checkpoint openai/whisper-tiny \
|
||||
--whisper_dump_path whisper-tiny-openai.pt
|
||||
```
|
||||
- Whisper relies on [`~GenerationMixin.generate`] for inference.
|
||||
- The [`WhisperProcessor`] can be used for preparing audio and decoding predicted ids back into text.
|
||||
|
||||
## WhisperConfig
|
||||
|
||||
@ -205,9 +139,6 @@ python convert_hf_to_openai.py \
|
||||
- batch_decode
|
||||
- decode
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
## WhisperModel
|
||||
|
||||
[[autodoc]] WhisperModel
|
||||
@ -230,9 +161,6 @@ python convert_hf_to_openai.py \
|
||||
[[autodoc]] WhisperForAudioClassification
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
## TFWhisperModel
|
||||
|
||||
[[autodoc]] TFWhisperModel
|
||||
@ -243,9 +171,6 @@ python convert_hf_to_openai.py \
|
||||
[[autodoc]] TFWhisperForConditionalGeneration
|
||||
- call
|
||||
|
||||
</tf>
|
||||
<jax>
|
||||
|
||||
## FlaxWhisperModel
|
||||
|
||||
[[autodoc]] FlaxWhisperModel
|
||||
@ -260,7 +185,3 @@ python convert_hf_to_openai.py \
|
||||
|
||||
[[autodoc]] FlaxWhisperForAudioClassification
|
||||
- __call__
|
||||
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user