Pytorch type hints (#20112)

* initial commit

* Update modeling_whisper.py

* Fixing Tests

* modeling_vision_text_dual_encoder

* modeling_vision_encoder_decoder

* Update modeling_vit.py

* Update modeling_vit_msn.py

* Update modeling_trajectory_transformer.py

* style

* Update modeling_time_series_transformer.py

* Update modeling_time_series_transformer.py

* Update modeling_segformer.py

* Update modeling_plbart.py

* Update modeling_dpt.py

* Update modeling_deit.py

* Update modeling_dpt.py

* Update modeling_esm.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_flava.py

* Update modeling_flava.py

* Update modeling_layoutlmv3.py

* Update modeling_levit.py
This commit is contained in:
IMvision12 2022-11-14 18:09:18 +05:30 committed by GitHub
parent 03bc6ece1b
commit d24e84d9ed
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 233 additions and 233 deletions

View File

@ -494,7 +494,7 @@ class DeiTModel(DeiTPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states

View File

@ -712,12 +712,12 @@ class DPTModel(DPTPreTrainedModel):
)
def forward(
self,
pixel_values,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
@ -875,13 +875,13 @@ class DPTForDepthEstimation(DPTPreTrainedModel):
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss.
@ -1036,13 +1036,13 @@ class DPTForSemanticSegmentation(DPTPreTrainedModel):
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,

View File

@ -940,7 +940,7 @@ class EsmForMaskedLM(EsmPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
@ -1042,7 +1042,7 @@ class EsmForSequenceClassification(EsmPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
@ -1138,7 +1138,7 @@ class EsmForTokenClassification(EsmPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.

View File

@ -943,7 +943,7 @@ class FlavaImageModel(FlavaPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
@ -1039,7 +1039,7 @@ class FlavaTextModel(FlavaPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
@ -1142,7 +1142,7 @@ class FlavaMultimodalModel(FlavaPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states

View File

@ -548,13 +548,13 @@ class FNetModel(FNetPreTrainedModel):
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)

View File

@ -848,18 +848,18 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel):
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
bbox=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:

View File

@ -16,7 +16,7 @@
import itertools
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
@ -561,7 +561,7 @@ class LevitModel(LevitPreTrainedModel):
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
@ -630,7 +630,7 @@ class LevitForImageClassification(LevitPreTrainedModel):
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
@ -722,7 +722,7 @@ class LevitForImageClassificationWithTeacher(LevitPreTrainedModel):
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, LevitForImageClassificationWithTeacherOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)

View File

@ -1176,7 +1176,7 @@ class PLBartModel(PLBartPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states

View File

@ -1159,16 +1159,16 @@ class RealmEmbedder(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmEmbedderOutput]:
r"""
Returns:
@ -1241,20 +1241,20 @@ class RealmScorer(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
candidate_input_ids=None,
candidate_attention_mask=None,
candidate_token_type_ids=None,
candidate_inputs_embeds=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
candidate_input_ids: Optional[torch.LongTensor] = None,
candidate_attention_mask: Optional[torch.FloatTensor] = None,
candidate_token_type_ids: Optional[torch.LongTensor] = None,
candidate_inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmScorerOutput]:
r"""
candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`):
Indices of candidate input sequence tokens in the vocabulary.
@ -1396,19 +1396,19 @@ class RealmKnowledgeAugEncoder(RealmPreTrainedModel):
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
relevance_score=None,
labels=None,
mlm_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
relevance_score: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
mlm_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*):
Relevance score derived from RealmScorer, must be specified if you want to compute the masked language
@ -1537,21 +1537,21 @@ class RealmReader(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
relevance_score=None,
block_mask=None,
start_positions=None,
end_positions=None,
has_answers=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
relevance_score: Optional[torch.FloatTensor] = None,
block_mask: Optional[torch.BoolTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
has_answers: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmReaderOutput]:
r"""
relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*):
Relevance score, which must be specified if you want to compute the logits and marginal log loss.
@ -1763,12 +1763,12 @@ class RealmForOpenQA(RealmPreTrainedModel):
@replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
answer_ids=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor],
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
answer_ids: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmForOpenQAOutput]:
r"""
Returns:

View File

@ -706,7 +706,7 @@ class SegformerDecodeHead(SegformerPreTrainedModel):
self.config = config
def forward(self, encoder_hidden_states):
def forward(self, encoder_hidden_states: torch.FloatTensor):
batch_size = encoder_hidden_states[-1].shape[0]
all_hidden_states = ()

View File

@ -15,7 +15,7 @@
""" Classes to support Speech-Encoder-Text-Decoder architectures"""
from typing import Optional
from typing import Optional, Tuple, Union
import torch
from torch import nn
@ -443,22 +443,22 @@ class SpeechEncoderDecoderModel(PreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
input_values=None,
input_features=None,
return_dict=None,
inputs: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
input_values: Optional[torch.FloatTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Returns:

View File

@ -17,7 +17,7 @@
import math
import random
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import torch
from torch import nn
@ -1144,21 +1144,21 @@ class Speech2TextModel(Speech2TextPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_features: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Returns:
@ -1291,22 +1291,22 @@ class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_features: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`

View File

@ -18,7 +18,7 @@
import copy
import math
import random
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import torch
from torch import nn
@ -780,20 +780,20 @@ class Speech2Text2ForCausalLM(Speech2Text2PreTrainedModel):
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

View File

@ -1584,7 +1584,7 @@ class TimeSeriesTransformerModel(TimeSeriesTransformerPreTrainedModel):
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Seq2SeqTimeSeriesModelOutput, Tuple]:
r"""
Returns:
@ -1747,7 +1747,7 @@ class TimeSeriesTransformerForPrediction(TimeSeriesTransformerPreTrainedModel):
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Seq2SeqTimeSeriesModelOutput, Tuple]:
r"""
Returns:

View File

@ -17,7 +17,7 @@
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import numpy as np
import torch
@ -478,7 +478,7 @@ class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple[torch.Tensor], TrajectoryTransformerOutput]:
r"""
Returns:

View File

@ -18,7 +18,7 @@
import gc
import os
import tempfile
from typing import Optional
from typing import Optional, Tuple, Union
import torch
from torch import nn
@ -520,19 +520,19 @@ class VisionEncoderDecoderModel(PreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Returns:

View File

@ -15,7 +15,7 @@
""" PyTorch VisionTextDualEncoder model."""
from typing import Optional
from typing import Optional, Tuple, Union
import torch
from torch import nn
@ -295,16 +295,16 @@ class VisionTextDualEncoderModel(PreTrainedModel):
@replace_return_docstrings(output_type=CLIPOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
pixel_values=None,
attention_mask=None,
position_ids=None,
return_loss=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
token_type_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CLIPOutput]:
r"""
Returns:

View File

@ -541,7 +541,7 @@ class ViTModel(ViTPreTrainedModel):
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states

View File

@ -525,7 +525,7 @@ class ViTMSNModel(ViTMSNPreTrainedModel):
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[tuple, BaseModelOutput]:
r"""
Returns:

View File

@ -17,7 +17,7 @@
import math
import random
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
@ -1004,20 +1004,20 @@ class WhisperModel(WhisperPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_features: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
Returns:
@ -1140,21 +1140,21 @@ class WhisperForConditionalGeneration(WhisperPreTrainedModel):
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_features: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`