mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
fix typo/presentation
This commit is contained in:
parent
8f97f6c57f
commit
cdf0f2fec3
@ -1,27 +1,27 @@
|
||||
from pytorch_pretrained_bert.tokenization_gpt2 import GPT2Tokenizer
|
||||
from pytorch_pretrained_bert.modeling_gpt2 import (
|
||||
GPT2Model,
|
||||
GPT2LMHeadModel,
|
||||
GPT2DoubleHeadsModel
|
||||
GPT2Model,
|
||||
GPT2LMHeadModel,
|
||||
GPT2DoubleHeadsModel
|
||||
)
|
||||
|
||||
# A lot of models share the same param doc. Use a decorator
|
||||
# to save typing
|
||||
gpt2_docstring = """
|
||||
Params:
|
||||
pretrained_model_name_or_path: either:
|
||||
- a str with the name of a pre-trained model to load selected in the list of:
|
||||
. `gpt2`
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `gpt2_config.json` a configuration file for the model
|
||||
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `gpt2_config.json` a configuration file for the model
|
||||
. a TensorFlow checkpoint with trained weights
|
||||
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
||||
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
||||
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
|
||||
*inputs, **kwargs: additional input for the specific GPT-2 class
|
||||
Params:
|
||||
pretrained_model_name_or_path: either:
|
||||
- a str with the name of a pre-trained model to load selected in the list of:
|
||||
. `gpt2`
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `gpt2_config.json` a configuration file for the model
|
||||
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `gpt2_config.json` a configuration file for the model
|
||||
. a TensorFlow checkpoint with trained weights
|
||||
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
||||
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
||||
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
|
||||
*inputs, **kwargs: additional input for the specific GPT-2 class
|
||||
"""
|
||||
|
||||
|
||||
@ -35,27 +35,27 @@ def _append_from_pretrained_docstring(docstr):
|
||||
def gpt2Tokenizer(*args, **kwargs):
|
||||
"""
|
||||
Instantiate a GPT-2 BPE tokenizer for OpenAI GPT-2 from a pre-trained/customized vocab file.
|
||||
Peculiarities:
|
||||
Peculiarities:
|
||||
- Byte-level BPE
|
||||
|
||||
Args:
|
||||
pretrained_model_name_or_path: Path to pretrained model archive
|
||||
or one of pre-trained vocab configs below.
|
||||
* openai-gpt
|
||||
* gpt2
|
||||
Keyword args:
|
||||
special_tokens: Special tokens in vocabulary that are not pretrained ([SEP], [CLS]...)
|
||||
Default: None
|
||||
max_len: An artificial maximum length to truncate tokenized sequences to;
|
||||
Effective maximum length is always the minimum of this
|
||||
special_tokens: Special tokens in vocabulary that are not pretrained ([SEP], [CLS]...)
|
||||
Default: None
|
||||
max_len: An artificial maximum length to truncate tokenized sequences to;
|
||||
Effective maximum length is always the minimum of this
|
||||
value (if specified) and the underlying BERT model's
|
||||
sequence length.
|
||||
Default: None
|
||||
Default: None
|
||||
|
||||
Example:
|
||||
>>> import torch
|
||||
>>> import torch
|
||||
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
|
||||
|
||||
>>> text = "Who was Jim Henson ?"
|
||||
|
||||
>>> text = "Who was Jim Henson ?"
|
||||
>>> indexed_tokens = tokenizer.encode(tokenized_text)
|
||||
"""
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(*args, **kwargs)
|
||||
@ -66,31 +66,31 @@ def gpt2Tokenizer(*args, **kwargs):
|
||||
def gpt2Model(*args, **kwargs):
|
||||
"""
|
||||
gpt2Model is the basic OpenAI GPT-2 Transformer model based on
|
||||
identical stacked masked self-attention blocks and pre-trained
|
||||
on large scale dataset using language modeling signal.
|
||||
identical stacked masked self-attention blocks and pre-trained
|
||||
on large scale dataset using language modeling signal.
|
||||
|
||||
Example:
|
||||
# Load the tokenizer
|
||||
>>> import torch
|
||||
>>> import torch
|
||||
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
|
||||
|
||||
# Prepare tokenized input
|
||||
>>> text_1 = "Who was Jim Henson ?"
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> indexed_tokens_1 = tokenizer.encode(text_1)
|
||||
>>> indexed_tokens_2 = tokenizer.encode(text_2)
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
|
||||
# Load gpt2Model
|
||||
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Model', 'gpt2')
|
||||
>>> model.eval()
|
||||
|
||||
# Predict hidden states features for each layer
|
||||
# past can be used to reuse precomputed hidden state in a subsequent predictions
|
||||
# past can be used to reuse precomputed hidden state in a subsequent predictions
|
||||
>>> with torch.no_grad():
|
||||
hidden_states_1, past = model(tokens_tensor_1)
|
||||
hidden_states_2, past = model(tokens_tensor_2, past=past)
|
||||
hidden_states_2, past = model(tokens_tensor_2, past=past)
|
||||
"""
|
||||
model = GPT2Model.from_pretrained(*args, **kwargs)
|
||||
return model
|
||||
@ -100,34 +100,34 @@ def gpt2Model(*args, **kwargs):
|
||||
def gpt2LMHeadModel(*args, **kwargs):
|
||||
"""
|
||||
gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
|
||||
tied (pre-trained) language modeling head on top.
|
||||
tied (pre-trained) language modeling head on top.
|
||||
|
||||
Example:
|
||||
Example:
|
||||
# Load the tokenizer
|
||||
>>> import torch
|
||||
>>> import torch
|
||||
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
|
||||
|
||||
# Prepare tokenized input
|
||||
>>> text_1 = "Who was Jim Henson ?"
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> indexed_tokens_1 = tokenizer.encode(text_1)
|
||||
>>> indexed_tokens_2 = tokenizer.encode(text_2)
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
|
||||
# Load gpt2LMHeadModel
|
||||
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2LMHeadModel', 'gpt2')
|
||||
>>> model.eval()
|
||||
|
||||
# Predict hidden states features for each layer
|
||||
# past can be used to reuse precomputed hidden state in a subsequent predictions
|
||||
# past can be used to reuse precomputed hidden state in a subsequent predictions
|
||||
>>> with torch.no_grad():
|
||||
predictions_1, past = model(tokens_tensor_1)
|
||||
predictions_2, past = model(tokens_tensor_2, past=past)
|
||||
predictions_1, past = model(tokens_tensor_1)
|
||||
predictions_2, past = model(tokens_tensor_2, past=past)
|
||||
|
||||
# Get the predicted last token
|
||||
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
|
||||
>>> predicted_token = tokenizer.decode([predicted_index])
|
||||
# Get the predicted last token
|
||||
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
|
||||
>>> predicted_token = tokenizer.decode([predicted_index])
|
||||
>>> assert predicted_token == ' who'
|
||||
"""
|
||||
model = GPT2LMHeadModel.from_pretrained(*args, **kwargs)
|
||||
@ -138,19 +138,19 @@ def gpt2LMHeadModel(*args, **kwargs):
|
||||
def gpt2DoubleHeadsModel(*args, **kwargs):
|
||||
"""
|
||||
gpt2DoubleHeadsModel is the OpenAI GPT-2 Transformer model with the
|
||||
tied (pre-trained) language modeling head and a multiple choice
|
||||
classification head (only initialized, not pre-trained).
|
||||
tied (pre-trained) language modeling head and a multiple choice
|
||||
classification head (only initialized, not pre-trained).
|
||||
|
||||
Example:
|
||||
Example:
|
||||
# Load the tokenizer
|
||||
>>> import torch
|
||||
>>> import torch
|
||||
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
|
||||
|
||||
# Prepare tokenized input
|
||||
>>> text = "Who was Jim Henson ?"
|
||||
>>> text = "Who was Jim Henson ?"
|
||||
>>> indexed_tokens = tokenizer.encode(text)
|
||||
>>> tokens_tensor = torch.tensor([indexed_tokens])
|
||||
>>> mc_token_ids = torch.LongTensor([ [len(indexed_tokens)] ])
|
||||
>>> mc_token_ids = torch.LongTensor([ [len(indexed_tokens)] ])
|
||||
|
||||
# Load gpt2DoubleHeadsModel
|
||||
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2DoubleHeadsModel', 'gpt2')
|
||||
|
@ -1,7 +1,7 @@
|
||||
from pytorch_pretrained_bert.tokenization_transfo_xl import TransfoXLTokenizer
|
||||
from pytorch_pretrained_bert.modeling_transfo_xl import (
|
||||
TransfoXLModel,
|
||||
TransfoXLLMHeadModel
|
||||
TransfoXLModel,
|
||||
TransfoXLLMHeadModel
|
||||
)
|
||||
|
||||
# A lot of models share the same param doc. Use a decorator
|
||||
@ -11,20 +11,20 @@ transformer_xl_docstring = """
|
||||
- you don't need to specify positioning embeddings indices
|
||||
- the tokens in the vocabulary have to be sorted to decreasing frequency.
|
||||
|
||||
Params:
|
||||
pretrained_model_name_or_path: either:
|
||||
- a str with the name of a pre-trained model to load selected in the list of:
|
||||
. `transfo-xl-wt103`
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `transfo_xl_config.json` a configuration file for the model
|
||||
. `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `transfo_xl_config.json` a configuration file for the model
|
||||
. `model.chkpt` a TensorFlow checkpoint
|
||||
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
||||
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
||||
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
|
||||
*inputs, **kwargs: additional input for the specific TransformerXL class
|
||||
Params:
|
||||
pretrained_model_name_or_path: either:
|
||||
- a str with the name of a pre-trained model to load selected in the list of:
|
||||
. `transfo-xl-wt103`
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `transfo_xl_config.json` a configuration file for the model
|
||||
. `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
|
||||
- a path or url to a pretrained model archive containing:
|
||||
. `transfo_xl_config.json` a configuration file for the model
|
||||
. `model.chkpt` a TensorFlow checkpoint
|
||||
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
||||
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
||||
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
|
||||
*inputs, **kwargs: additional input for the specific TransformerXL class
|
||||
"""
|
||||
|
||||
|
||||
@ -45,12 +45,12 @@ def transformerXLTokenizer(*args, **kwargs):
|
||||
* transfo-xl-wt103
|
||||
|
||||
Example:
|
||||
>>> import torch
|
||||
>>> import torch
|
||||
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
|
||||
|
||||
>>> text = "Who was Jim Henson ?"
|
||||
|
||||
>>> text = "Who was Jim Henson ?"
|
||||
>>> tokenized_text = tokenizer.tokenize(tokenized_text)
|
||||
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
|
||||
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
|
||||
"""
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained(*args, **kwargs)
|
||||
return tokenizer
|
||||
@ -60,33 +60,33 @@ def transformerXLTokenizer(*args, **kwargs):
|
||||
def transformerXLModel(*args, **kwargs):
|
||||
"""
|
||||
gpt2Model is the basic OpenAI GPT-2 Transformer model based on
|
||||
identical stacked masked self-attention blocks and pre-trained
|
||||
on large scale dataset using language modeling signal.
|
||||
identical stacked masked self-attention blocks and pre-trained
|
||||
on large scale dataset using language modeling signal.
|
||||
|
||||
Example:
|
||||
# Load the tokenizer
|
||||
>>> import torch
|
||||
>>> import torch
|
||||
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
|
||||
|
||||
# Prepare tokenized input
|
||||
>>> text_1 = "Who was Jim Henson ?"
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
|
||||
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
|
||||
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
|
||||
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
|
||||
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
|
||||
# Load transformerXLModel
|
||||
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLModel', 'transfo-xl-wt103')
|
||||
>>> model.eval()
|
||||
|
||||
# Predict hidden states features for each layer
|
||||
# We can re-use the memory cells in a subsequent call to attend a longer context
|
||||
# We can re-use the memory cells in a subsequent call to attend a longer context
|
||||
>>> with torch.no_grad():
|
||||
hidden_states_1, mems_1 = model(tokens_tensor_1)
|
||||
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
|
||||
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
|
||||
"""
|
||||
model = TransfoXLModel.from_pretrained(*args, **kwargs)
|
||||
return model
|
||||
@ -96,37 +96,37 @@ def transformerXLModel(*args, **kwargs):
|
||||
def transformerXLLMHeadModel(*args, **kwargs):
|
||||
"""
|
||||
gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
|
||||
tied (pre-trained) language modeling head on top.
|
||||
tied (pre-trained) language modeling head on top.
|
||||
|
||||
Example:
|
||||
Example:
|
||||
# Load the tokenizer
|
||||
>>> import torch
|
||||
>>> import torch
|
||||
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
|
||||
|
||||
# Prepare tokenized input
|
||||
>>> text_1 = "Who was Jim Henson ?"
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
|
||||
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
|
||||
>>> text_2 = "Jim Henson was a puppeteer"
|
||||
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
|
||||
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
|
||||
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
|
||||
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
||||
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
||||
|
||||
# Load transformerXLLMHeadModel
|
||||
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
|
||||
>>> model.eval()
|
||||
|
||||
# Predict hidden states features for each layer
|
||||
# We can re-use the memory cells in a subsequent call to attend a longer context
|
||||
# We can re-use the memory cells in a subsequent call to attend a longer context
|
||||
>>> with torch.no_grad():
|
||||
predictions_1, mems_1 = model(tokens_tensor_1)
|
||||
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
|
||||
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
|
||||
|
||||
# Get the predicted last token
|
||||
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
|
||||
>>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
|
||||
>>> assert predicted_token == 'who'
|
||||
# Get the predicted last token
|
||||
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
|
||||
>>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
|
||||
>>> assert predicted_token == 'who'
|
||||
"""
|
||||
model = TransfoXLLMHeadModel.from_pretrained(*args, **kwargs)
|
||||
return model
|
||||
|
Loading…
Reference in New Issue
Block a user