Roberta is ExecuTorch compatible (#34425)

* Roberta is ExecuTorch compatible

* [run_slow] roberta

---------

Co-authored-by: Guang Yang <guangyang@fb.com>
This commit is contained in:
Guang Yang 2024-10-30 01:36:45 -07:00 committed by GitHub
parent 9bee9ff5db
commit cd277618d4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -16,7 +16,7 @@
import unittest
from transformers import RobertaConfig, is_torch_available
from transformers import AutoTokenizer, RobertaConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
@ -41,6 +41,7 @@ if is_torch_available():
RobertaEmbeddings,
create_position_ids_from_input_ids,
)
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_4
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"
@ -576,3 +577,43 @@ class RobertaModelIntegrationTest(TestCasePlus):
# expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
@slow
def test_export(self):
if not is_torch_greater_or_equal_than_2_4:
self.skipTest(reason="This test requires torch >= 2.4 to run.")
roberta_model = "FacebookAI/roberta-base"
device = "cpu"
attn_implementation = "sdpa"
max_length = 512
tokenizer = AutoTokenizer.from_pretrained(roberta_model)
inputs = tokenizer(
"The goal of life is <mask>.",
return_tensors="pt",
padding="max_length",
max_length=max_length,
)
model = RobertaForMaskedLM.from_pretrained(
roberta_model,
device_map=device,
attn_implementation=attn_implementation,
use_cache=True,
)
logits = model(**inputs).logits
eager_predicted_mask = tokenizer.decode(logits[0, 6].topk(5).indices)
self.assertEqual(eager_predicted_mask.split(), ["happiness", "love", "peace", "freedom", "simplicity"])
exported_program = torch.export.export(
model,
args=(inputs["input_ids"],),
kwargs={"attention_mask": inputs["attention_mask"]},
strict=True,
)
result = exported_program.module().forward(inputs["input_ids"], inputs["attention_mask"])
exported_predicted_mask = tokenizer.decode(result.logits[0, 6].topk(5).indices)
self.assertEqual(eager_predicted_mask, exported_predicted_mask)