mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
getting ready
This commit is contained in:
parent
43badf217d
commit
ccce66be27
106
.gitignore
vendored
106
.gitignore
vendored
@ -1,104 +1,2 @@
|
|||||||
# Byte-compiled / optimized / DLL files
|
# VSCode
|
||||||
__pycache__/
|
.vscode
|
||||||
*.py[cod]
|
|
||||||
*$py.class
|
|
||||||
|
|
||||||
# C extensions
|
|
||||||
*.so
|
|
||||||
|
|
||||||
# Distribution / packaging
|
|
||||||
.Python
|
|
||||||
build/
|
|
||||||
develop-eggs/
|
|
||||||
dist/
|
|
||||||
downloads/
|
|
||||||
eggs/
|
|
||||||
.eggs/
|
|
||||||
lib/
|
|
||||||
lib64/
|
|
||||||
parts/
|
|
||||||
sdist/
|
|
||||||
var/
|
|
||||||
wheels/
|
|
||||||
*.egg-info/
|
|
||||||
.installed.cfg
|
|
||||||
*.egg
|
|
||||||
MANIFEST
|
|
||||||
|
|
||||||
# PyInstaller
|
|
||||||
# Usually these files are written by a python script from a template
|
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
||||||
*.manifest
|
|
||||||
*.spec
|
|
||||||
|
|
||||||
# Installer logs
|
|
||||||
pip-log.txt
|
|
||||||
pip-delete-this-directory.txt
|
|
||||||
|
|
||||||
# Unit test / coverage reports
|
|
||||||
htmlcov/
|
|
||||||
.tox/
|
|
||||||
.coverage
|
|
||||||
.coverage.*
|
|
||||||
.cache
|
|
||||||
nosetests.xml
|
|
||||||
coverage.xml
|
|
||||||
*.cover
|
|
||||||
.hypothesis/
|
|
||||||
.pytest_cache/
|
|
||||||
|
|
||||||
# Translations
|
|
||||||
*.mo
|
|
||||||
*.pot
|
|
||||||
|
|
||||||
# Django stuff:
|
|
||||||
*.log
|
|
||||||
local_settings.py
|
|
||||||
db.sqlite3
|
|
||||||
|
|
||||||
# Flask stuff:
|
|
||||||
instance/
|
|
||||||
.webassets-cache
|
|
||||||
|
|
||||||
# Scrapy stuff:
|
|
||||||
.scrapy
|
|
||||||
|
|
||||||
# Sphinx documentation
|
|
||||||
docs/_build/
|
|
||||||
|
|
||||||
# PyBuilder
|
|
||||||
target/
|
|
||||||
|
|
||||||
# Jupyter Notebook
|
|
||||||
.ipynb_checkpoints
|
|
||||||
|
|
||||||
# pyenv
|
|
||||||
.python-version
|
|
||||||
|
|
||||||
# celery beat schedule file
|
|
||||||
celerybeat-schedule
|
|
||||||
|
|
||||||
# SageMath parsed files
|
|
||||||
*.sage.py
|
|
||||||
|
|
||||||
# Environments
|
|
||||||
.env
|
|
||||||
.venv
|
|
||||||
env/
|
|
||||||
venv/
|
|
||||||
ENV/
|
|
||||||
env.bak/
|
|
||||||
venv.bak/
|
|
||||||
|
|
||||||
# Spyder project settings
|
|
||||||
.spyderproject
|
|
||||||
.spyproject
|
|
||||||
|
|
||||||
# Rope project settings
|
|
||||||
.ropeproject
|
|
||||||
|
|
||||||
# mkdocs documentation
|
|
||||||
/site
|
|
||||||
|
|
||||||
# mypy
|
|
||||||
.mypy_cache/
|
|
481
bert_model.py
Normal file
481
bert_model.py
Normal file
@ -0,0 +1,481 @@
|
|||||||
|
"""
|
||||||
|
A PyTorch implementation of Google's BERT Model.
|
||||||
|
|
||||||
|
From "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
|
||||||
|
By Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
|
||||||
|
Link: http://arxiv.org/abs/1810.04805
|
||||||
|
|
||||||
|
Adapted from HuggingFace's OpenAI PyTorch code and its adaptation by AllenNLP.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# pylint: disable=invalid-name,arguments-differ
|
||||||
|
from typing import NamedTuple, List
|
||||||
|
import copy
|
||||||
|
import io
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import pathlib
|
||||||
|
import re
|
||||||
|
import tarfile
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.nn import Parameter
|
||||||
|
|
||||||
|
# pylint: disable=line-too-long
|
||||||
|
_PARAMETER_NAMES = ["model/we:0",
|
||||||
|
"model/h0/attn/c_attn/w:0", "model/h0/attn/c_attn/b:0", "model/h0/attn/c_proj/w:0",
|
||||||
|
"model/h0/attn/c_proj/b:0", "model/h0/ln_1/g:0", "model/h0/ln_1/b:0", "model/h0/mlp/c_fc/w:0",
|
||||||
|
"model/h0/mlp/c_fc/b:0", "model/h0/mlp/c_proj/w:0", "model/h0/mlp/c_proj/b:0", "model/h0/ln_2/g:0",
|
||||||
|
"model/h0/ln_2/b:0", "model/h1/attn/c_attn/w:0", "model/h1/attn/c_attn/b:0", "model/h1/attn/c_proj/w:0",
|
||||||
|
"model/h1/attn/c_proj/b:0", "model/h1/ln_1/g:0", "model/h1/ln_1/b:0", "model/h1/mlp/c_fc/w:0",
|
||||||
|
"model/h1/mlp/c_fc/b:0", "model/h1/mlp/c_proj/w:0", "model/h1/mlp/c_proj/b:0", "model/h1/ln_2/g:0",
|
||||||
|
"model/h1/ln_2/b:0", "model/h2/attn/c_attn/w:0", "model/h2/attn/c_attn/b:0", "model/h2/attn/c_proj/w:0",
|
||||||
|
"model/h2/attn/c_proj/b:0", "model/h2/ln_1/g:0", "model/h2/ln_1/b:0", "model/h2/mlp/c_fc/w:0",
|
||||||
|
"model/h2/mlp/c_fc/b:0", "model/h2/mlp/c_proj/w:0", "model/h2/mlp/c_proj/b:0", "model/h2/ln_2/g:0",
|
||||||
|
"model/h2/ln_2/b:0", "model/h3/attn/c_attn/w:0", "model/h3/attn/c_attn/b:0", "model/h3/attn/c_proj/w:0",
|
||||||
|
"model/h3/attn/c_proj/b:0", "model/h3/ln_1/g:0", "model/h3/ln_1/b:0", "model/h3/mlp/c_fc/w:0",
|
||||||
|
"model/h3/mlp/c_fc/b:0", "model/h3/mlp/c_proj/w:0", "model/h3/mlp/c_proj/b:0", "model/h3/ln_2/g:0",
|
||||||
|
"model/h3/ln_2/b:0", "model/h4/attn/c_attn/w:0", "model/h4/attn/c_attn/b:0", "model/h4/attn/c_proj/w:0",
|
||||||
|
"model/h4/attn/c_proj/b:0", "model/h4/ln_1/g:0", "model/h4/ln_1/b:0", "model/h4/mlp/c_fc/w:0",
|
||||||
|
"model/h4/mlp/c_fc/b:0", "model/h4/mlp/c_proj/w:0", "model/h4/mlp/c_proj/b:0", "model/h4/ln_2/g:0",
|
||||||
|
"model/h4/ln_2/b:0", "model/h5/attn/c_attn/w:0", "model/h5/attn/c_attn/b:0", "model/h5/attn/c_proj/w:0",
|
||||||
|
"model/h5/attn/c_proj/b:0", "model/h5/ln_1/g:0", "model/h5/ln_1/b:0", "model/h5/mlp/c_fc/w:0",
|
||||||
|
"model/h5/mlp/c_fc/b:0", "model/h5/mlp/c_proj/w:0", "model/h5/mlp/c_proj/b:0", "model/h5/ln_2/g:0",
|
||||||
|
"model/h5/ln_2/b:0", "model/h6/attn/c_attn/w:0", "model/h6/attn/c_attn/b:0", "model/h6/attn/c_proj/w:0",
|
||||||
|
"model/h6/attn/c_proj/b:0", "model/h6/ln_1/g:0", "model/h6/ln_1/b:0", "model/h6/mlp/c_fc/w:0",
|
||||||
|
"model/h6/mlp/c_fc/b:0", "model/h6/mlp/c_proj/w:0", "model/h6/mlp/c_proj/b:0", "model/h6/ln_2/g:0",
|
||||||
|
"model/h6/ln_2/b:0", "model/h7/attn/c_attn/w:0", "model/h7/attn/c_attn/b:0", "model/h7/attn/c_proj/w:0",
|
||||||
|
"model/h7/attn/c_proj/b:0", "model/h7/ln_1/g:0", "model/h7/ln_1/b:0", "model/h7/mlp/c_fc/w:0",
|
||||||
|
"model/h7/mlp/c_fc/b:0", "model/h7/mlp/c_proj/w:0", "model/h7/mlp/c_proj/b:0", "model/h7/ln_2/g:0",
|
||||||
|
"model/h7/ln_2/b:0", "model/h8/attn/c_attn/w:0", "model/h8/attn/c_attn/b:0", "model/h8/attn/c_proj/w:0",
|
||||||
|
"model/h8/attn/c_proj/b:0", "model/h8/ln_1/g:0", "model/h8/ln_1/b:0", "model/h8/mlp/c_fc/w:0",
|
||||||
|
"model/h8/mlp/c_fc/b:0", "model/h8/mlp/c_proj/w:0", "model/h8/mlp/c_proj/b:0", "model/h8/ln_2/g:0",
|
||||||
|
"model/h8/ln_2/b:0", "model/h9/attn/c_attn/w:0", "model/h9/attn/c_attn/b:0", "model/h9/attn/c_proj/w:0",
|
||||||
|
"model/h9/attn/c_proj/b:0", "model/h9/ln_1/g:0", "model/h9/ln_1/b:0", "model/h9/mlp/c_fc/w:0",
|
||||||
|
"model/h9/mlp/c_fc/b:0", "model/h9/mlp/c_proj/w:0", "model/h9/mlp/c_proj/b:0", "model/h9/ln_2/g:0",
|
||||||
|
"model/h9/ln_2/b:0", "model/h10/attn/c_attn/w:0", "model/h10/attn/c_attn/b:0", "model/h10/attn/c_proj/w:0",
|
||||||
|
"model/h10/attn/c_proj/b:0", "model/h10/ln_1/g:0", "model/h10/ln_1/b:0", "model/h10/mlp/c_fc/w:0",
|
||||||
|
"model/h10/mlp/c_fc/b:0", "model/h10/mlp/c_proj/w:0", "model/h10/mlp/c_proj/b:0", "model/h10/ln_2/g:0",
|
||||||
|
"model/h10/ln_2/b:0", "model/h11/attn/c_attn/w:0", "model/h11/attn/c_attn/b:0", "model/h11/attn/c_proj/w:0",
|
||||||
|
"model/h11/attn/c_proj/b:0", "model/h11/ln_1/g:0", "model/h11/ln_1/b:0", "model/h11/mlp/c_fc/w:0",
|
||||||
|
"model/h11/mlp/c_fc/b:0", "model/h11/mlp/c_proj/w:0", "model/h11/mlp/c_proj/b:0", "model/h11/ln_2/g:0",
|
||||||
|
"model/h11/ln_2/b:0", "model/clf/w:0", "model/clf/b:0"]
|
||||||
|
# pylint: enable=line-too-long
|
||||||
|
|
||||||
|
def gelu(x: torch.Tensor) -> torch.Tensor:
|
||||||
|
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
||||||
|
|
||||||
|
class BERTConfig(NamedTuple):
|
||||||
|
"""
|
||||||
|
BERT's hyper-parameters
|
||||||
|
"""
|
||||||
|
embedding_dim: int = 768
|
||||||
|
num_heads: int = 12
|
||||||
|
dropout: float = 0.1
|
||||||
|
|
||||||
|
class LayerNorm(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
A layernorm module in the Tensorflow style (with the epsilon inside the square root).
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, n_state, e=1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.g = torch.nn.Parameter(torch.ones(n_state))
|
||||||
|
self.b = torch.nn.Parameter(torch.zeros(n_state))
|
||||||
|
self.e = e
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
u = x.mean(-1, keepdim=True)
|
||||||
|
s = (x - u).pow(2).mean(-1, keepdim=True)
|
||||||
|
x = (x - u) / torch.sqrt(s + self.e)
|
||||||
|
return self.g * x + self.b
|
||||||
|
|
||||||
|
|
||||||
|
class Conv1D(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
A batched linear layer using torch.addmm
|
||||||
|
"""
|
||||||
|
def __init__(self, nf: int, rf: int, nx: int) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.rf = rf
|
||||||
|
self.nf = nf
|
||||||
|
w = torch.empty(nx, nf)
|
||||||
|
torch.nn.init.normal_(w, std=0.02)
|
||||||
|
self.w = Parameter(w)
|
||||||
|
self.b = Parameter(torch.zeros(nf))
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
size_out = x.size()[:-1] + (self.nf,)
|
||||||
|
x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w)
|
||||||
|
x = x.view(*size_out)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class Attention(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
A self-attention layer comprising a sequence of:
|
||||||
|
- a linear layer: instance of the `Conv1D` class,
|
||||||
|
- spliting the inputs in key, value, query tensors (x.split),
|
||||||
|
- reshaping key, value, query tensors according to the number of head (self.split_heads)
|
||||||
|
- appying self attention (self._attn)
|
||||||
|
- merging back the heads results (self.merge_heads)
|
||||||
|
- a linear layer: instance of the `Conv1D` class,
|
||||||
|
- a dropout layer: instance of `torch.nn.Dropout` class.
|
||||||
|
|
||||||
|
See above for the details of Conv1D.
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
nx: int,
|
||||||
|
n_ctx: int,
|
||||||
|
config: BERTConfig,
|
||||||
|
scale: bool = False) -> None:
|
||||||
|
super().__init__()
|
||||||
|
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
||||||
|
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
||||||
|
assert n_state % config.num_heads == 0
|
||||||
|
self.register_buffer('b', torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
|
||||||
|
self.n_head = config.num_heads
|
||||||
|
self.split_size = n_state
|
||||||
|
self.scale = scale
|
||||||
|
self.c_attn = Conv1D(n_state * 3, 1, nx)
|
||||||
|
self.c_proj = Conv1D(n_state, 1, nx)
|
||||||
|
self.attn_dropout = torch.nn.Dropout(config.dropout)
|
||||||
|
self.resid_dropout = torch.nn.Dropout(config.dropout)
|
||||||
|
|
||||||
|
def _attn(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
|
||||||
|
w = torch.matmul(q, k)
|
||||||
|
if self.scale:
|
||||||
|
w = w / math.sqrt(v.size(-1))
|
||||||
|
w = w * self.b + -1e9 * (1 - self.b) # TF implem method: mask_attn_weights
|
||||||
|
w = torch.nn.Softmax(dim=-1)(w)
|
||||||
|
w = self.attn_dropout(w)
|
||||||
|
return torch.matmul(w, v)
|
||||||
|
|
||||||
|
def merge_heads(self, x: torch.Tensor):
|
||||||
|
# pylint: disable=no-self-use
|
||||||
|
x = x.permute(0, 2, 1, 3).contiguous()
|
||||||
|
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
||||||
|
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
||||||
|
|
||||||
|
def split_heads(self, x: torch.Tensor, k: bool = False):
|
||||||
|
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
||||||
|
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
||||||
|
if k:
|
||||||
|
return x.permute(0, 2, 3, 1)
|
||||||
|
else:
|
||||||
|
return x.permute(0, 2, 1, 3)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.c_attn(x)
|
||||||
|
query, key, value = x.split(self.split_size, dim=2)
|
||||||
|
query = self.split_heads(query)
|
||||||
|
key = self.split_heads(key, k=True)
|
||||||
|
value = self.split_heads(value)
|
||||||
|
a = self._attn(query, key, value)
|
||||||
|
a = self.merge_heads(a)
|
||||||
|
a = self.c_proj(a)
|
||||||
|
a = self.resid_dropout(a)
|
||||||
|
return a
|
||||||
|
|
||||||
|
|
||||||
|
class MLP(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
A multi-layer perceptron layer comprising a sequence of:
|
||||||
|
- a linear layer: instance of the `Conv1D` class,
|
||||||
|
- an activation function: the `gelu` function,
|
||||||
|
- another linear layer: instance of the `Conv1D` class,
|
||||||
|
- a dropout layer: instance of `torch.nn.Dropout` class.
|
||||||
|
|
||||||
|
See above for the details of Conv1D and the gelu function.
|
||||||
|
"""
|
||||||
|
def __init__(self, n_state: int, config: BERTConfig) -> None: # in MLP: n_state=3072 (4 * n_embd)
|
||||||
|
super().__init__()
|
||||||
|
self.c_fc = Conv1D(n_state, 1, config.embedding_dim)
|
||||||
|
self.c_proj = Conv1D(config.embedding_dim, 1, n_state)
|
||||||
|
self.act = gelu
|
||||||
|
self.dropout = torch.nn.Dropout(config.dropout)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
h = self.act(self.c_fc(x))
|
||||||
|
h2 = self.c_proj(h)
|
||||||
|
return self.dropout(h2)
|
||||||
|
|
||||||
|
|
||||||
|
class Block(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
A Transformer Block comprising a sequence of:
|
||||||
|
- a self-attention layer: instance of the `Attention` class,
|
||||||
|
- a Layer Normalization layer: instance of the `LayerNorm` class,
|
||||||
|
- a Multi-layer perceptron layer: instance of the `MLP` class,
|
||||||
|
- another Layer Normalization layer: instance of the `LayerNorm` class.
|
||||||
|
|
||||||
|
See above for the details of these classes.
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
n_ctx: int,
|
||||||
|
config: BERTConfig,
|
||||||
|
scale: bool = False) -> None:
|
||||||
|
super().__init__()
|
||||||
|
nx = config.embedding_dim
|
||||||
|
self.attn = Attention(nx, n_ctx, config, scale)
|
||||||
|
self.ln_1 = LayerNorm(nx)
|
||||||
|
self.mlp = MLP(4 * nx, config)
|
||||||
|
self.ln_2 = LayerNorm(nx)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
a = self.attn(x)
|
||||||
|
n = self.ln_1(x + a)
|
||||||
|
m = self.mlp(n)
|
||||||
|
h = self.ln_2(n + m)
|
||||||
|
return h
|
||||||
|
|
||||||
|
class BERT(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
Google's BERT Model.
|
||||||
|
Default parameters are the ones for Google's pretrained model.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
vocab_size: ``int`` (optional, default: 40478)
|
||||||
|
The size of the vocabulary (number of byte pair embeddings)
|
||||||
|
excluding the n_special embeddings (if any), and the positional embeddings.
|
||||||
|
n_ctx: ``int`` (optional, default: 512)
|
||||||
|
The number of positional encodings to use for evaluation.
|
||||||
|
embedding_dim: ``int`` (optional, default: 768)
|
||||||
|
The dimension of the output embeddings.
|
||||||
|
num_heads: ``int`` (optional, default: 12)
|
||||||
|
How many "heads" the attention has.
|
||||||
|
num_layers: ``int`` (optional, default: 12)
|
||||||
|
How many layers of "blocks" the transformer has.
|
||||||
|
dropout_probability: ``float`` (optional, default: 0.1)
|
||||||
|
Dropout for all layers.
|
||||||
|
model_path: ``str`` (optional, default: ``None``)
|
||||||
|
A tar.gz file containing serialized model weights. If supplied,
|
||||||
|
the weights will be loaded from that file.
|
||||||
|
requires_grad: ``bool`` (optional, default: ``False``)
|
||||||
|
If true, the transformer will be fine-tuneable.
|
||||||
|
n_special: ``int`` (optional, default: ``-1``)
|
||||||
|
The number of special tokens added to the byte pair vocabulary
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
vocab_size: int = 40478,
|
||||||
|
n_ctx: int = 512,
|
||||||
|
embedding_dim: int = 768,
|
||||||
|
num_heads: int = 12,
|
||||||
|
num_layers: int = 12,
|
||||||
|
dropout_probability: float = 0.1,
|
||||||
|
model_path: str = None,
|
||||||
|
requires_grad: bool = False,
|
||||||
|
n_special: int = -1) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
config = BERTConfig(
|
||||||
|
embedding_dim,
|
||||||
|
num_heads,
|
||||||
|
embedding_dropout_probability,
|
||||||
|
attention_dropout_probability,
|
||||||
|
residual_dropout_probability,
|
||||||
|
activation_function,
|
||||||
|
)
|
||||||
|
|
||||||
|
# the embedding size is vocab_size + n_special embeddings + n_ctx
|
||||||
|
embedding_size = vocab_size + max(n_special, 0) + n_ctx
|
||||||
|
self.vocab_size = embedding_size
|
||||||
|
self.n_ctx = n_ctx
|
||||||
|
self.n_special = n_special
|
||||||
|
|
||||||
|
self.num_output_layers = 1 + num_layers
|
||||||
|
|
||||||
|
self.embed = torch.nn.Embedding(embedding_size, embedding_dim)
|
||||||
|
self.drop = torch.nn.Dropout(embedding_dropout_probability)
|
||||||
|
|
||||||
|
block = Block(n_ctx, config, scale=True)
|
||||||
|
self.h = torch.nn.ModuleList([copy.deepcopy(block) for _ in range(num_layers)])
|
||||||
|
self.decoder = torch.nn.Linear(embedding_dim, embedding_size, bias=False)
|
||||||
|
self.decoder.weight = self.embed.weight # Tied weights
|
||||||
|
# To reproduce the noise_shape parameter of TF implementation
|
||||||
|
|
||||||
|
torch.nn.init.normal_(self.embed.weight, std=0.02)
|
||||||
|
|
||||||
|
for parameter in self.parameters():
|
||||||
|
parameter.requires_grad = requires_grad
|
||||||
|
|
||||||
|
if model_path:
|
||||||
|
self.load_weights(model_path, n_special=n_special, n_ctx=n_ctx)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||||
|
#x = x.view(-1, x.size(2), x.size(3))
|
||||||
|
|
||||||
|
# x is (batch_size, sequence_length) tensor of byte-pair ids
|
||||||
|
|
||||||
|
# e is (batch_size, sequence_length, 2, embedding_dim) tensor of embeddings
|
||||||
|
e = self.embed(x)
|
||||||
|
|
||||||
|
# h is (batch_size, sequence_length, embedding_dim)
|
||||||
|
h = e.sum(dim=2)
|
||||||
|
|
||||||
|
all_layers = [h]
|
||||||
|
for block in self.h:
|
||||||
|
h = block(h)
|
||||||
|
all_layers.append(h)
|
||||||
|
|
||||||
|
# result is list of (batch_size, sequence_length, embedding_dim)
|
||||||
|
return all_layers
|
||||||
|
|
||||||
|
def load_weights(self,
|
||||||
|
bert_model_path: str,
|
||||||
|
n_ctx: int = -1,
|
||||||
|
n_special: int = -1,
|
||||||
|
n_transfer: int = 12,
|
||||||
|
n_embd: int = 768,
|
||||||
|
names: List[str] = _PARAMETER_NAMES) -> None:
|
||||||
|
# pylint: disable=dangerous-default-value
|
||||||
|
|
||||||
|
logger.info(f"loading weights from {bert_model_path}")
|
||||||
|
# if `file_path` is a URL, redirect to the cache
|
||||||
|
|
||||||
|
with tarfile.open(bert_model_path) as tmp:
|
||||||
|
num_params_files = len([member for member in tmp.getmembers() if member.name.endswith('.npy')])
|
||||||
|
shapesfile = tmp.extractfile('model/params_shapes.json')
|
||||||
|
if shapesfile:
|
||||||
|
shapes = json.loads(shapesfile.read())
|
||||||
|
else:
|
||||||
|
raise ConfigurationError("unable to find model/params_shapes.json in the archive")
|
||||||
|
|
||||||
|
# numpy can't read from a tarfile directly, so we need a workaround
|
||||||
|
# https://github.com/numpy/numpy/issues/7989#issuecomment-341656702
|
||||||
|
init_params: List[np.ndarray] = []
|
||||||
|
for n in range(num_params_files):
|
||||||
|
array_file = io.BytesIO()
|
||||||
|
array_file.write(tmp.extractfile(f'model/params_{n}.npy').read())
|
||||||
|
array_file.seek(0)
|
||||||
|
# each np.load is a (11653478,) numpy array
|
||||||
|
init_params.append(np.load(array_file))
|
||||||
|
|
||||||
|
# init_params is a list of 10 arrays of size (11653578,)
|
||||||
|
# shapes are [[512, 768], [40478, 768], [1, 768, 2304], [2304], ... # 146 elts
|
||||||
|
# products are [512 * 768, 40478 * 768, ...]
|
||||||
|
# offsets is [512 * 768, 512 * 768 + 40478 * 768, ...]
|
||||||
|
offsets = np.cumsum([np.prod(shape) for shape in shapes])
|
||||||
|
|
||||||
|
# split into the 146 subarrays corresponding to shapes
|
||||||
|
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
|
||||||
|
|
||||||
|
# reshape
|
||||||
|
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
|
||||||
|
|
||||||
|
# truncate if necessary
|
||||||
|
if n_ctx > 0:
|
||||||
|
# positional embeddings?
|
||||||
|
# init_params[0] is (512, 768) = (max_chars, embedding_dim)
|
||||||
|
init_params[0] = init_params[0][:n_ctx]
|
||||||
|
|
||||||
|
# combine init_params[1] and init_params[0]
|
||||||
|
if n_special > 0:
|
||||||
|
# init_params[1] is (40478, 768)
|
||||||
|
# special is (n_special, 768)
|
||||||
|
# init_params[0] is (512, 768)
|
||||||
|
# result is (40990 + n_special, 768)
|
||||||
|
init_params[0] = np.concatenate(
|
||||||
|
[init_params[1],
|
||||||
|
(np.random.randn(n_special, n_embd) * 0.02).astype(np.float32),
|
||||||
|
init_params[0]],
|
||||||
|
0
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# result is (40990, 768)
|
||||||
|
init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
|
||||||
|
del init_params[1]
|
||||||
|
|
||||||
|
# number of dimensions to transfer, 12 per layer, plus one extra
|
||||||
|
if n_transfer == -1:
|
||||||
|
n_transfer = 0
|
||||||
|
else:
|
||||||
|
n_transfer = 1 + n_transfer * 12
|
||||||
|
|
||||||
|
# squeeze?
|
||||||
|
init_params = [arr.squeeze() for arr in init_params]
|
||||||
|
|
||||||
|
# embedding.weight is (vocab_size, embedding_dim)
|
||||||
|
# make sure init_params[0] has the same shape
|
||||||
|
try:
|
||||||
|
assert self.embed.weight.shape == init_params[0].shape
|
||||||
|
except AssertionError as e:
|
||||||
|
e.args += (self.embed.weight.shape, init_params[0].shape)
|
||||||
|
raise
|
||||||
|
|
||||||
|
# and then assign it
|
||||||
|
self.embed.weight.data = torch.from_numpy(init_params[0])
|
||||||
|
self.decoder.weight = self.embed.weight
|
||||||
|
|
||||||
|
# for each (name, array) pair to transfer over
|
||||||
|
for name, ip in zip(names[1:n_transfer], init_params[1:n_transfer]):
|
||||||
|
# "model/h0/attn/c_attn/w:0"
|
||||||
|
name = name[6:] # "h0/attn/c_attn/w:0"
|
||||||
|
assert name[-2:] == ":0"
|
||||||
|
name = name[:-2] # "h0/attn/c_attn/w"
|
||||||
|
name_parts = name.split('/') # ['h0', 'attn', 'c_attn', 'w']
|
||||||
|
|
||||||
|
pointer = self
|
||||||
|
for m_name in name_parts:
|
||||||
|
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
|
||||||
|
l = re.split(r'(\d+)', m_name) # ['h', '0', '']
|
||||||
|
else:
|
||||||
|
l = [m_name] # ['attn']
|
||||||
|
pointer = getattr(pointer, l[0])
|
||||||
|
if len(l) >= 2:
|
||||||
|
num = int(l[1])
|
||||||
|
pointer = pointer[num]
|
||||||
|
try:
|
||||||
|
assert pointer.shape == ip.shape
|
||||||
|
except AssertionError as e:
|
||||||
|
e.args += (pointer.shape, ip.shape)
|
||||||
|
raise
|
||||||
|
|
||||||
|
pointer.data = torch.from_numpy(ip) # pylint: disable=attribute-defined-outside-init
|
||||||
|
|
||||||
|
def dump_weights(self,
|
||||||
|
output_dir: str,
|
||||||
|
num_pieces: int = 10) -> None:
|
||||||
|
output_path = pathlib.Path(output_dir) / 'model'
|
||||||
|
output_path.mkdir(exist_ok=True, parents=True) # pylint: disable=no-member
|
||||||
|
|
||||||
|
named_parameters = list(self.named_parameters())
|
||||||
|
|
||||||
|
# embedding weights get special treatment
|
||||||
|
_, array = named_parameters[0]
|
||||||
|
num_bpe = self.vocab_size - self.n_ctx
|
||||||
|
byte_pair_embeddings = array[:num_bpe]
|
||||||
|
positional_embeddings = array[num_bpe:]
|
||||||
|
|
||||||
|
arrays = [positional_embeddings.numpy().ravel(), byte_pair_embeddings.numpy().ravel()]
|
||||||
|
shapes = [positional_embeddings.shape, byte_pair_embeddings.shape]
|
||||||
|
names = ["model/we:0"]
|
||||||
|
|
||||||
|
for param_name, tensor in named_parameters[1:]:
|
||||||
|
param_name = f'h{param_name}' # 'h0.attn.c_attn.w'
|
||||||
|
parts = param_name.split(".") # ['h0', 'attn', 'c_attn', 'w']
|
||||||
|
name = "model/" + '/'.join(parts) + ':0' # 'model/h0/attn/c_attn/w:0'
|
||||||
|
array = tensor.numpy().ravel()
|
||||||
|
|
||||||
|
arrays.append(array)
|
||||||
|
shapes.append(list(tensor.shape))
|
||||||
|
names.append(name)
|
||||||
|
|
||||||
|
# write out the arrays
|
||||||
|
big_array = np.concatenate(arrays)
|
||||||
|
total_size = len(big_array)
|
||||||
|
batch_size = math.ceil(total_size / num_pieces)
|
||||||
|
|
||||||
|
for i in range(num_pieces):
|
||||||
|
filename = output_path / f"params_{i}.npy"
|
||||||
|
start = i * batch_size
|
||||||
|
end = start + batch_size
|
||||||
|
subarray = big_array[start:end]
|
||||||
|
|
||||||
|
np.save(filename, subarray)
|
||||||
|
|
||||||
|
# write out the shapes
|
||||||
|
with open(output_path / 'params_shapes.json', 'w') as shapes_file:
|
||||||
|
json.dump(shapes, shapes_file)
|
89
data_processor.py
Normal file
89
data_processor.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
"""
|
||||||
|
Prepare input data for Google's BERT Model.
|
||||||
|
|
||||||
|
Contains some functions from tensor2tensor library: https://github.com/tensorflow/tensor2tensor
|
||||||
|
|
||||||
|
"""
|
||||||
|
from typing import NamedTuple, List, Union, Tuple
|
||||||
|
|
||||||
|
TokenizedSentence = List[str]
|
||||||
|
TokenizedInput = Union[Tuple[TokenizedSentence, TokenizedSentence], TokenizedSentence]
|
||||||
|
|
||||||
|
class DataProcessor():
|
||||||
|
def __init__(self, vocab_path):
|
||||||
|
self.encoder_file_path = encoder_file_path
|
||||||
|
self.token_indexer = json.load(open(vocab_path))
|
||||||
|
|
||||||
|
|
||||||
|
def tokenize(text):
|
||||||
|
"""Encode a unicode string as a list of tokens.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: a unicode string
|
||||||
|
Returns:
|
||||||
|
a list of tokens as Unicode strings
|
||||||
|
"""
|
||||||
|
if not text:
|
||||||
|
return []
|
||||||
|
ret = []
|
||||||
|
token_start = 0
|
||||||
|
# Classify each character in the input string
|
||||||
|
is_alnum = [c in _ALPHANUMERIC_CHAR_SET for c in text]
|
||||||
|
for pos in range(1, len(text)):
|
||||||
|
if is_alnum[pos] != is_alnum[pos - 1]:
|
||||||
|
token = text[token_start:pos]
|
||||||
|
if token != u" " or token_start == 0:
|
||||||
|
ret.append(token)
|
||||||
|
token_start = pos
|
||||||
|
final_token = text[token_start:]
|
||||||
|
ret.append(final_token)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def detokenize(tokens):
|
||||||
|
"""Decode a list of tokens to a unicode string.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tokens: a list of Unicode strings
|
||||||
|
Returns:
|
||||||
|
a unicode string
|
||||||
|
"""
|
||||||
|
token_is_alnum = [t[0] in _ALPHANUMERIC_CHAR_SET for t in tokens]
|
||||||
|
ret = []
|
||||||
|
for i, token in enumerate(tokens):
|
||||||
|
if i > 0 and token_is_alnum[i - 1] and token_is_alnum[i]:
|
||||||
|
ret.append(u" ")
|
||||||
|
ret.append(token)
|
||||||
|
return "".join(ret)
|
||||||
|
|
||||||
|
def encode(input_sentences: List[TokenizedInput]) -> np.array:
|
||||||
|
""" Prepare a torch.Tensor of inputs for BERT model from a string.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_sentences: list of
|
||||||
|
- pairs of tokenized sentences (sentence_A, sentence_B) or
|
||||||
|
- tokenized sentences (will be considered as sentence_A only)
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Numpy array of formated inputs for BERT model
|
||||||
|
"""
|
||||||
|
batch_size = sum(min(len(x), n_perso_permute) for x in X1)
|
||||||
|
input_mask = np.zeros((n_batch, n_cands, n_ctx), dtype=np.float32)
|
||||||
|
input_array = np.zeros((n_batch, n_cands, n_ctx, 3), dtype=np.int32)
|
||||||
|
i = 0
|
||||||
|
for tokenized_input in input_sentences:
|
||||||
|
x1j, lxj, lperso, lhisto, dialog_embed = format_transformer_input(x1, x2, xcand_j, text_encoder,
|
||||||
|
dialog_embed_mode, max_len=max_len,
|
||||||
|
add_start_stop=True)
|
||||||
|
lmj = len(xcand_j[:max_len]) + 1
|
||||||
|
xmb[i, j, :lxj, 0] = x1j
|
||||||
|
if dialog_embed_mode == 1 or dialog_embed_mode == 2:
|
||||||
|
xmb[i, j, :lxj, 2] = dialog_embed
|
||||||
|
mmb[i, j, :lxj] = 1
|
||||||
|
if fix_lm_index: # Take one before so we don't predict from classify token...
|
||||||
|
mmb_eval[i, j, (lxj-lmj-1):lxj-1] = 1 # This one only mask the response so we get the perplexity on the response only
|
||||||
|
else:
|
||||||
|
mmb_eval[i, j, (lxj-lmj):lxj] = 1 # This one only mask the response so we get the perplexity on the response only
|
||||||
|
xmb[i, j, :, 1] = np.arange(n_vocab+n_special, n_vocab+n_special+n_ctx)
|
||||||
|
i += 1
|
||||||
|
return input_array, input_mask
|
5
download_weights.sh
Normal file
5
download_weights.sh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
echo "=== Downloading BERT pre-trained weights ==="
|
||||||
|
echo "---"
|
||||||
|
wget --quiet --continue http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
|
||||||
|
tar -xzf simple-examples.tgz
|
||||||
|
rm -rf simple-examples.tgz
|
18
example.py
Normal file
18
example.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
"""
|
||||||
|
Show how to use HuggingFace's PyTorch implementation of Google's BERT Model.
|
||||||
|
"""
|
||||||
|
from .bert_model import BERT
|
||||||
|
from .prepare_inputs import DataPreprocessor
|
||||||
|
|
||||||
|
bert_model = BERT()
|
||||||
|
bert_model.load_from('.')
|
||||||
|
data_processor = DataProcessor(encoder_file_path='.')
|
||||||
|
|
||||||
|
input_sentence = "We are playing with the BERT model."
|
||||||
|
print("BERT inputs: {}".format(input_sentence))
|
||||||
|
|
||||||
|
tensor_input = data_processor.encode(input_sentence)
|
||||||
|
tensor_output = bert_model(prepared_input)
|
||||||
|
output_sentence = data_processor.decode(tensor_output)
|
||||||
|
|
||||||
|
print("BERT predicted: {}".format(output_sentence))
|
Loading…
Reference in New Issue
Block a user