mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Return input_ids in ImageGPT feature extractor (#16872)
This commit is contained in:
parent
e789418ebe
commit
cb555af2c7
@ -68,7 +68,7 @@ class ImageGPTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMix
|
||||
Whether or not to normalize the input to the range between -1 and +1.
|
||||
"""
|
||||
|
||||
model_input_names = ["pixel_values"]
|
||||
model_input_names = ["input_ids"]
|
||||
|
||||
def __init__(self, clusters, do_resize=True, size=32, resample=Image.BILINEAR, do_normalize=True, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
@ -128,8 +128,7 @@ class ImageGPTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMix
|
||||
Returns:
|
||||
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
||||
|
||||
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
|
||||
width).
|
||||
- **input_ids** -- Input IDs to be fed to a model, of shape `(batch_size, height * width)`.
|
||||
"""
|
||||
# Input type checking for clearer error
|
||||
valid_images = False
|
||||
@ -171,7 +170,7 @@ class ImageGPTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMix
|
||||
images = images.reshape(batch_size, -1)
|
||||
|
||||
# return as BatchFeature
|
||||
data = {"pixel_values": images}
|
||||
data = {"input_ids": images}
|
||||
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
|
||||
|
||||
return encoded_inputs
|
||||
|
@ -161,17 +161,17 @@ class ImageGPTFeatureExtractorIntegrationTest(unittest.TestCase):
|
||||
# test non-batched
|
||||
encoding = feature_extractor(images[0], return_tensors="pt")
|
||||
|
||||
self.assertIsInstance(encoding.pixel_values, torch.LongTensor)
|
||||
self.assertEqual(encoding.pixel_values.shape, (1, 1024))
|
||||
self.assertIsInstance(encoding.input_ids, torch.LongTensor)
|
||||
self.assertEqual(encoding.input_ids.shape, (1, 1024))
|
||||
|
||||
expected_slice = [306, 191, 191]
|
||||
self.assertEqual(encoding.pixel_values[0, :3].tolist(), expected_slice)
|
||||
self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice)
|
||||
|
||||
# test batched
|
||||
encoding = feature_extractor(images, return_tensors="pt")
|
||||
|
||||
self.assertIsInstance(encoding.pixel_values, torch.LongTensor)
|
||||
self.assertEqual(encoding.pixel_values.shape, (2, 1024))
|
||||
self.assertIsInstance(encoding.input_ids, torch.LongTensor)
|
||||
self.assertEqual(encoding.input_ids.shape, (2, 1024))
|
||||
|
||||
expected_slice = [303, 13, 13]
|
||||
self.assertEqual(encoding.pixel_values[1, -3:].tolist(), expected_slice)
|
||||
self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice)
|
||||
|
Loading…
Reference in New Issue
Block a user