mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Update example readme
This commit is contained in:
parent
7da3ef24cd
commit
ca99a2d500
@ -32,7 +32,7 @@ Quick benchmarks from the script (no other modifications):
|
||||
| Titan V | AMP | 26s | 0.8281/0.8568/0.8411 |
|
||||
| V100 | FP32 | 35s | 0.8646/0.8359/0.8464 |
|
||||
| V100 | AMP | 22s | 0.8646/0.8385/0.8411 |
|
||||
| 1080 Ti | FP32 | 55s | - |
|
||||
| 1080 Ti | FP32 | 55s | - |
|
||||
|
||||
Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
|
||||
|
||||
@ -346,9 +346,9 @@ eval_loss = 0.44457291918821606
|
||||
|
||||
Based on the script [`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/run_squad.py).
|
||||
|
||||
#### Fine-tuning on SQuAD
|
||||
#### Fine-tuning BERT on SQuAD1.0
|
||||
|
||||
This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large)
|
||||
This example code fine-tunes BERT on the SQuAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large)
|
||||
on a single tesla V100 16GB. The data for SQuAD can be downloaded with the following links and should be saved in a
|
||||
$SQUAD_DIR directory.
|
||||
|
||||
@ -356,6 +356,12 @@ $SQUAD_DIR directory.
|
||||
* [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
|
||||
* [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
|
||||
|
||||
And for SQuAD2.0, you need to download:
|
||||
|
||||
- [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
|
||||
- [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
|
||||
- [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)
|
||||
|
||||
```bash
|
||||
export SQUAD_DIR=/path/to/SQUAD
|
||||
|
||||
@ -385,7 +391,7 @@ exact_match = 81.22
|
||||
#### Distributed training
|
||||
|
||||
|
||||
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
|
||||
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.0:
|
||||
|
||||
```bash
|
||||
python -m torch.distributed.launch --nproc_per_node=8 run_squad.py \
|
||||
@ -417,7 +423,9 @@ This fine-tuned model is available as a checkpoint under the reference
|
||||
|
||||
#### Fine-tuning XLNet on SQuAD
|
||||
|
||||
This example code fine-tunes XLNet on the SQuAD dataset. See above to download the data for SQuAD .
|
||||
This example code fine-tunes XLNet on both SQuAD1.0 and SQuAD2.0 dataset. See above to download the data for SQuAD .
|
||||
|
||||
##### Command for SQuAD1.0:
|
||||
|
||||
```bash
|
||||
export SQUAD_DIR=/path/to/SQUAD
|
||||
@ -440,7 +448,32 @@ python /data/home/hlu/transformers/examples/run_squad.py \
|
||||
--save_steps 5000
|
||||
```
|
||||
|
||||
Training with the previously defined hyper-parameters yields the following results:
|
||||
##### Command for SQuAD2.0:
|
||||
|
||||
```bash
|
||||
export SQUAD_DIR=/path/to/SQUAD
|
||||
|
||||
python run_squad.py \
|
||||
--model_type xlnet \
|
||||
--model_name_or_path xlnet-large-cased \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--version_2_with_negative \
|
||||
--train_file $SQUAD_DIR/train-v2.0.json \
|
||||
--predict_file $SQUAD_DIR/dev-v2.0.json \
|
||||
--learning_rate 3e-5 \
|
||||
--num_train_epochs 4 \
|
||||
--max_seq_length 384 \
|
||||
--doc_stride 128 \
|
||||
--output_dir ./wwm_cased_finetuned_squad/ \
|
||||
--per_gpu_eval_batch_size=2 \
|
||||
--per_gpu_train_batch_size=2 \
|
||||
--save_steps 5000
|
||||
```
|
||||
|
||||
Larger batch size may improve the performance while costing more memory.
|
||||
|
||||
##### Results for SQuAD1.0 with the previously defined hyper-parameters:
|
||||
|
||||
```python
|
||||
{
|
||||
@ -453,6 +486,24 @@ Training with the previously defined hyper-parameters yields the following resul
|
||||
}
|
||||
```
|
||||
|
||||
##### Results for SQuAD2.0 with the previously defined hyper-parameters:
|
||||
|
||||
```python
|
||||
{
|
||||
"exact": 80.4177545691906,
|
||||
"f1": 84.07154997729623,
|
||||
"total": 11873,
|
||||
"HasAns_exact": 76.73751686909581,
|
||||
"HasAns_f1": 84.05558584352873,
|
||||
"HasAns_total": 5928,
|
||||
"NoAns_exact": 84.0874684608915,
|
||||
"NoAns_f1": 84.0874684608915,
|
||||
"NoAns_total": 5945
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Named Entity Recognition
|
||||
|
||||
Based on the script [`run_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/run_ner.py).
|
||||
|
Loading…
Reference in New Issue
Block a user