Add gguf support for gpt2 (#34044)

* add gpt2 gguf support

* add doc change

* small refactoring
This commit is contained in:
Vladislav Bronzov 2024-10-10 13:42:18 +02:00 committed by GitHub
parent 66e08dba71
commit c9afee5392
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 95 additions and 2 deletions

View File

@ -83,6 +83,7 @@ For now the supported model architectures are the architectures that have been v
- Bloom
- Falcon
- StableLM
- GPT2
## Example usage

View File

@ -163,6 +163,19 @@ GGUF_TENSOR_MAPPING = {
"output.weight": "lm_head.weight",
"output_norm": "model.norm",
},
"gpt2": {
"token_embd": "transformer.wte",
"blk": "transformer.h",
"position_embd": "transformer.wpe",
"output_norm": "transformer.ln_f",
"attn_norm": "ln_1",
"attn_qkv": "attn.c_attn",
"attn_output.weight": "attn.c_proj.weight",
"attn_output.bias": "attn.c_proj.bias",
"ffn_norm": "ln_2",
"ffn_up": "mlp.c_fc",
"ffn_down": "mlp.c_proj",
},
}
@ -271,6 +284,14 @@ GGUF_CONFIG_MAPPING = {
"attention.layer_norm_epsilon": "layer_norm_eps",
"vocab_size": "vocab_size",
},
"gpt2": {
"block_count": "n_layer",
"context_length": "n_ctx",
"embedding_length": "n_embd",
"feed_forward_length": "feed_forward_length",
"attention.head_count": "n_head",
"attention.layer_norm_epsilon": "layer_norm_epsilon",
},
}
GGUF_TOKENIZER_MAPPING = {
@ -600,6 +621,7 @@ GGUF_TO_FAST_CONVERTERS = {
"bloom": GGUFGPTConverter,
"falcon": GGUFGPTConverter,
"stablelm": GGUFGPTConverter,
"gpt2": GGUFGPTConverter,
}

View File

@ -191,6 +191,23 @@ def load_gguf_checkpoint(gguf_checkpoint_path, return_tensors=False):
else:
weights = reverse_reshape_bias(weights, num_heads, n_embed)
if architecture == "gpt2":
if (
"attn_qkv.weight" in name
or "ffn_down.weight" in name
or "ffn_up.weight" in name
or "attn_output.weight" in name
):
# Original transpose implementation
# https://github.com/ggerganov/llama.cpp/blob/a38b884c6c4b0c256583acfaaabdf556c62fabea/convert_hf_to_gguf.py#L2060-L2061
weights = weights.T
if name == "output.weight":
# output.weight has conflicts with attn_output.weight in name checking
# we have to explicitly check that name is exactly output.weight
name = "lm_head.weight"
parsed_parameters["tensors"][name] = torch.from_numpy(np.copy(weights))
continue
for tensor_name in tensor_key_mapping:
if tensor_name in name:
name = name.replace(tensor_name, tensor_key_mapping[tensor_name])

View File

@ -97,8 +97,8 @@ class GPT2TokenizerFast(PreTrainedTokenizerFast):
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
vocab_file=vocab_file,
merges_file=merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,

View File

@ -51,6 +51,9 @@ class GgufIntegrationTests(unittest.TestCase):
stablelm_model_id = "afrideva/stablelm-3b-4e1t-GGUF"
stablelm2_model_id = "afrideva/stablelm-2-1_6b-GGUF"
original_stablelm2_model_id = "stabilityai/stablelm-2-1_6b"
gpt2_model_id = "mradermacher/gpt2-GGUF"
gpt2_original_model_id = "openai-community/gpt2"
gpt2_xl_model_id = "RichardErkhov/openai-community_-_gpt2-xl-gguf"
# standard quants
q4_0_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q4_0.gguf"
@ -87,6 +90,9 @@ class GgufIntegrationTests(unittest.TestCase):
fp16_falcon7b_model_id = "falcon-7b-fp16.gguf"
q2_k_falcon40b_model_id = "tiiuae-falcon-40b-Q2_K.gguf"
fp16_qwen2moe_model_id = "Qwen1.5-MoE-A2.7B.gguf"
fp16_gpt2_model_id = "gpt2.f16.gguf"
q8_gpt2_model_id = "gpt2.Q8_0.gguf"
q6_k_gpt2_xl_model_id = "gpt2-xl.Q6_K.gguf"
example_text = "Hello"
@ -476,6 +482,53 @@ class GgufIntegrationTests(unittest.TestCase):
self.assertTrue(quantized_param.shape == original_param.shape)
torch.testing.assert_close(quantized_param, original_param)
def test_gpt2_q8(self):
tokenizer = AutoTokenizer.from_pretrained(self.gpt2_model_id, gguf_file=self.q8_gpt2_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.gpt2_model_id,
gguf_file=self.q8_gpt2_model_id,
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt")
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I'm sorry. I'm sorry. I"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gpt2_weights_conversion_fp16(self):
quantized_model = AutoModelForCausalLM.from_pretrained(
self.gpt2_model_id,
gguf_file=self.fp16_gpt2_model_id,
torch_dtype=torch.float16,
)
original_model = AutoModelForCausalLM.from_pretrained(
self.gpt2_original_model_id,
torch_dtype=torch.float16,
)
quantized_state_dict = quantized_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in quantized_state_dict:
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, quantized_state_dict[layer_name])
def test_gpt2_xl_Q6_K(self):
tokenizer = AutoTokenizer.from_pretrained(self.gpt2_xl_model_id, gguf_file=self.q6_k_gpt2_xl_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.gpt2_xl_model_id,
gguf_file=self.q6_k_gpt2_xl_model_id,
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt")
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I'm a newbie to the world of"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
@unittest.skip(reason="Heavy memory")
def test_falcon40b_q2_k(self):
tokenizer = AutoTokenizer.from_pretrained(self.falcon40b_model_id, gguf_file=self.q2_k_falcon40b_model_id)