mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Add tests for Reformer tokenizer (#6485)
This commit is contained in:
parent
f9d280a959
commit
c9454507cf
253
tests/test_tokenization_reformer.py
Normal file
253
tests/test_tokenization_reformer.py
Normal file
@ -0,0 +1,253 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
import unittest
|
||||
|
||||
from transformers.file_utils import cached_property
|
||||
from transformers.testing_utils import require_torch, slow
|
||||
from transformers.tokenization_reformer import SPIECE_UNDERLINE, ReformerTokenizer
|
||||
|
||||
from .test_tokenization_common import TokenizerTesterMixin
|
||||
|
||||
|
||||
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
|
||||
|
||||
|
||||
class ReformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
|
||||
tokenizer_class = ReformerTokenizer
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
|
||||
tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
||||
tokenizer.save_pretrained(self.tmpdirname)
|
||||
|
||||
def test_full_tokenizer(self):
|
||||
tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
||||
|
||||
tokens = tokenizer.tokenize("This is a test")
|
||||
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
||||
|
||||
self.assertListEqual(
|
||||
tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382],
|
||||
)
|
||||
|
||||
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
||||
self.assertListEqual(
|
||||
tokens,
|
||||
[
|
||||
SPIECE_UNDERLINE + "I",
|
||||
SPIECE_UNDERLINE + "was",
|
||||
SPIECE_UNDERLINE + "b",
|
||||
"or",
|
||||
"n",
|
||||
SPIECE_UNDERLINE + "in",
|
||||
SPIECE_UNDERLINE + "",
|
||||
"9",
|
||||
"2",
|
||||
"0",
|
||||
"0",
|
||||
"0",
|
||||
",",
|
||||
SPIECE_UNDERLINE + "and",
|
||||
SPIECE_UNDERLINE + "this",
|
||||
SPIECE_UNDERLINE + "is",
|
||||
SPIECE_UNDERLINE + "f",
|
||||
"al",
|
||||
"s",
|
||||
"é",
|
||||
".",
|
||||
],
|
||||
)
|
||||
ids = tokenizer.convert_tokens_to_ids(tokens)
|
||||
self.assertListEqual(
|
||||
ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
|
||||
)
|
||||
|
||||
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
||||
self.assertListEqual(
|
||||
back_tokens,
|
||||
[
|
||||
SPIECE_UNDERLINE + "I",
|
||||
SPIECE_UNDERLINE + "was",
|
||||
SPIECE_UNDERLINE + "b",
|
||||
"or",
|
||||
"n",
|
||||
SPIECE_UNDERLINE + "in",
|
||||
SPIECE_UNDERLINE + "",
|
||||
"<unk>",
|
||||
"2",
|
||||
"0",
|
||||
"0",
|
||||
"0",
|
||||
",",
|
||||
SPIECE_UNDERLINE + "and",
|
||||
SPIECE_UNDERLINE + "this",
|
||||
SPIECE_UNDERLINE + "is",
|
||||
SPIECE_UNDERLINE + "f",
|
||||
"al",
|
||||
"s",
|
||||
"<unk>",
|
||||
".",
|
||||
],
|
||||
)
|
||||
|
||||
@cached_property
|
||||
def big_tokenizer(self):
|
||||
return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
|
||||
|
||||
@slow
|
||||
def test_tokenization_base_easy_symbols(self):
|
||||
symbols = "Hello World!"
|
||||
original_tokenizer_encodings = [126, 32, 262, 152, 38, 72, 287]
|
||||
|
||||
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
|
||||
|
||||
@slow
|
||||
def test_tokenization_base_hard_symbols(self):
|
||||
symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
|
||||
original_tokenizer_encodings = [
|
||||
108,
|
||||
265,
|
||||
24,
|
||||
111,
|
||||
4,
|
||||
258,
|
||||
156,
|
||||
35,
|
||||
28,
|
||||
275,
|
||||
3,
|
||||
259,
|
||||
297,
|
||||
260,
|
||||
84,
|
||||
4,
|
||||
35,
|
||||
110,
|
||||
44,
|
||||
8,
|
||||
259,
|
||||
91,
|
||||
268,
|
||||
21,
|
||||
11,
|
||||
209,
|
||||
274,
|
||||
109,
|
||||
266,
|
||||
277,
|
||||
117,
|
||||
86,
|
||||
93,
|
||||
315,
|
||||
258,
|
||||
278,
|
||||
258,
|
||||
277,
|
||||
258,
|
||||
0,
|
||||
258,
|
||||
288,
|
||||
258,
|
||||
319,
|
||||
258,
|
||||
0,
|
||||
258,
|
||||
0,
|
||||
258,
|
||||
0,
|
||||
258,
|
||||
0,
|
||||
258,
|
||||
287,
|
||||
258,
|
||||
315,
|
||||
258,
|
||||
289,
|
||||
258,
|
||||
278,
|
||||
99,
|
||||
269,
|
||||
266,
|
||||
262,
|
||||
8,
|
||||
259,
|
||||
241,
|
||||
4,
|
||||
217,
|
||||
230,
|
||||
268,
|
||||
266,
|
||||
55,
|
||||
168,
|
||||
106,
|
||||
75,
|
||||
193,
|
||||
266,
|
||||
223,
|
||||
27,
|
||||
49,
|
||||
26,
|
||||
282,
|
||||
25,
|
||||
264,
|
||||
299,
|
||||
19,
|
||||
26,
|
||||
0,
|
||||
258,
|
||||
277,
|
||||
117,
|
||||
86,
|
||||
93,
|
||||
176,
|
||||
183,
|
||||
270,
|
||||
11,
|
||||
262,
|
||||
42,
|
||||
61,
|
||||
265,
|
||||
]
|
||||
|
||||
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
|
||||
|
||||
@slow
|
||||
@require_torch
|
||||
def test_torch_encode_plus_sent_to_model(self):
|
||||
import torch
|
||||
from transformers import ReformerModel, ReformerConfig
|
||||
|
||||
# Build sequence
|
||||
first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10]
|
||||
sequence = " ".join(first_ten_tokens)
|
||||
encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt")
|
||||
batch_encoded_sequence = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
|
||||
|
||||
config = ReformerConfig()
|
||||
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
|
||||
config.axial_pos_shape = encoded_sequence["input_ids"].shape
|
||||
model = ReformerModel(config)
|
||||
|
||||
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
|
||||
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
|
||||
|
||||
with torch.no_grad():
|
||||
model(**encoded_sequence)
|
||||
model(**batch_encoded_sequence)
|
Loading…
Reference in New Issue
Block a user