mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
FIX [bnb
] Make unexpected_keys
optional (#29420)
* make `unexpected_keys` optional * push * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
This commit is contained in:
parent
87e2ea33aa
commit
c852d4fba6
@ -3769,7 +3769,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
):
|
||||
set_module_tensor_to_device(model, key, "cpu", value)
|
||||
else:
|
||||
hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict)
|
||||
hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys)
|
||||
|
||||
# retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights.
|
||||
if _fast_init:
|
||||
|
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
from packaging import version
|
||||
|
||||
@ -143,7 +143,7 @@ class Bnb4BitHfQuantizer(HfQuantizer):
|
||||
param_name: str,
|
||||
target_device: "torch.device",
|
||||
state_dict: Dict[str, Any],
|
||||
unexpected_keys: List[str],
|
||||
unexpected_keys: Optional[List[str]] = None,
|
||||
):
|
||||
"""
|
||||
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
|
||||
@ -198,7 +198,8 @@ class Bnb4BitHfQuantizer(HfQuantizer):
|
||||
for k, v in state_dict.items():
|
||||
if param_name + "." in k:
|
||||
quantized_stats[k] = v
|
||||
unexpected_keys.remove(k)
|
||||
if unexpected_keys is not None and k in unexpected_keys:
|
||||
unexpected_keys.remove(k)
|
||||
|
||||
new_value = bnb.nn.Params4bit.from_prequantized(
|
||||
data=param_value,
|
||||
|
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
from packaging import version
|
||||
|
||||
@ -162,7 +162,7 @@ class Bnb8BitHfQuantizer(HfQuantizer):
|
||||
param_name: str,
|
||||
target_device: "torch.device",
|
||||
state_dict: Dict[str, Any],
|
||||
unexpected_keys: List[str],
|
||||
unexpected_keys: Optional[List[str]] = None,
|
||||
):
|
||||
"""
|
||||
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
|
||||
@ -207,7 +207,8 @@ class Bnb8BitHfQuantizer(HfQuantizer):
|
||||
module._parameters[tensor_name] = new_value
|
||||
if fp16_statistics is not None:
|
||||
setattr(module.weight, "SCB", fp16_statistics.to(target_device))
|
||||
unexpected_keys.remove(fp16_statistics_key)
|
||||
if unexpected_keys is not None:
|
||||
unexpected_keys.remove(fp16_statistics_key)
|
||||
|
||||
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
||||
model.is_loaded_in_8bit = True
|
||||
|
Loading…
Reference in New Issue
Block a user