mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00
ruff format
This commit is contained in:
parent
88840ee45a
commit
c808083e39
@ -24,6 +24,4 @@ else:
|
||||
import sys
|
||||
|
||||
_file = globals()["__file__"]
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__, _file, define_import_structure(_file), module_spec=__spec__
|
||||
)
|
||||
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
|
||||
|
@ -121,20 +121,14 @@ class PLMModelTester:
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor(
|
||||
[self.batch_size, self.seq_length], self.type_vocab_size
|
||||
)
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor(
|
||||
[self.batch_size], self.type_sequence_label_size
|
||||
)
|
||||
token_labels = ids_tensor(
|
||||
[self.batch_size, self.seq_length], self.num_labels
|
||||
)
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = self.get_config()
|
||||
@ -239,9 +233,7 @@ class PLMModelTester:
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(
|
||||
result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)
|
||||
)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
@ -297,17 +289,13 @@ class PLMModelTester:
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[
|
||||
:, -3:, random_slice_idx
|
||||
].detach()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(
|
||||
torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
|
||||
)
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
@ -325,9 +313,7 @@ class PLMModelTester:
|
||||
|
||||
|
||||
@require_torch
|
||||
class PLMModelTest(
|
||||
ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase
|
||||
):
|
||||
class PLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
# breakpoint()
|
||||
all_model_classes = (
|
||||
(
|
||||
@ -402,21 +388,15 @@ class PLMModelTest(
|
||||
def test_contrastive_generate_low_memory(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support."
|
||||
)
|
||||
@unittest.skip("PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
|
||||
def test_generate_with_static_cache(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support."
|
||||
)
|
||||
@unittest.skip("PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
|
||||
def test_generate_from_inputs_embeds_with_static_cache(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support."
|
||||
)
|
||||
@unittest.skip("PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
|
||||
def test_generate_continue_from_inputs_embeds(self):
|
||||
pass
|
||||
|
||||
@ -424,27 +404,19 @@ class PLMModelTest(
|
||||
def test_sdpa_equivalence(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"PLM uses MLA so it is not compatible with the standard cache format"
|
||||
)
|
||||
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
|
||||
def test_beam_search_generate_dict_outputs_use_cache(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"PLM uses MLA so it is not compatible with the standard cache format"
|
||||
)
|
||||
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
|
||||
def test_generate_compilation_all_outputs(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"PLM uses MLA so it is not compatible with the standard cache format"
|
||||
)
|
||||
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
|
||||
def test_generate_compile_model_forward(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"PLM uses MLA so it is not compatible with the standard cache format"
|
||||
)
|
||||
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
|
||||
def test_greedy_generate_dict_outputs_use_cache(self):
|
||||
pass
|
||||
|
||||
@ -576,9 +548,7 @@ class PLMIntegrationTest(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
if is_torch_available() and torch.cuda.is_available():
|
||||
cls.cuda_compute_capability_major_version = (
|
||||
torch.cuda.get_device_capability()[0]
|
||||
)
|
||||
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
||||
|
||||
@slow
|
||||
@require_torch_accelerator
|
||||
@ -604,43 +574,29 @@ class PLMIntegrationTest(unittest.TestCase):
|
||||
"Simply put, the theory of relativity states that ",
|
||||
"My favorite all time favorite condiment is ketchup.",
|
||||
]
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"PLM-Team/PLM-1.8B-Base", use_fast=False
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("PLM-Team/PLM-1.8B-Base", use_fast=False)
|
||||
model = PLMForCausalLM.from_pretrained(
|
||||
"PLM-Team/PLM-1.8B-Base", device_map=torch_device, torch_dtype=torch.float16
|
||||
)
|
||||
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
||||
|
||||
# Dynamic Cache
|
||||
generated_ids = model.generate(
|
||||
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False
|
||||
)
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
|
||||
dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text)
|
||||
|
||||
# Static Cache
|
||||
generated_ids = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=NUM_TOKENS_TO_GENERATE,
|
||||
do_sample=False,
|
||||
cache_implementation="static"
|
||||
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
|
||||
)
|
||||
static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text)
|
||||
|
||||
# Static Cache + compile
|
||||
model._cache = None # clear cache object, initialized when we pass `cache_implementation="static"`
|
||||
model.forward = torch.compile(
|
||||
model.forward, mode="reduce-overhead", fullgraph=True
|
||||
)
|
||||
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
||||
generated_ids = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=NUM_TOKENS_TO_GENERATE,
|
||||
do_sample=False,
|
||||
cache_implementation="static"
|
||||
)
|
||||
static_compiled_text = tokenizer.batch_decode(
|
||||
generated_ids, skip_special_tokens=True
|
||||
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
|
||||
)
|
||||
static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_compiled_text)
|
||||
|
Loading…
Reference in New Issue
Block a user