Script for distilling zero-shot classifier to more efficient student (#10244)

* add zero-shot distillation script

* readme wordsmithing

* clean up code

* add multi-gpu teacher inference
plus tidying up more code

* add use_fast_tokenizer arg

* update results in readme

* more readme wordsmithing

* style

* Add handle to readme

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* fix code block

* add error+docs about distributed & tpu

* add @sgugger format requests

* xla -> tpu

* support fp16 for teacher preds

* no checkpoint by default

* add demo colab link

* add model sharing prompt + model link

* correct resulting acc of example

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
This commit is contained in:
Joe Davison 2021-02-18 17:08:45 -05:00 committed by GitHub
parent 97e688bc22
commit c6fe17557e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 493 additions and 0 deletions

View File

@ -0,0 +1,155 @@
# Zero-shot classifier distillation
Author: @joeddav
This script provides a way to improve the speed and memory performance of a zero-shot classifier by training a more
efficient student model from the zero-shot teacher's predictions over an unlabeled dataset.
The zero-shot classification pipeline uses a model pre-trained on natural language inference (NLI) to determine the
compatibility of a set of candidate class names with a given sequence. This serves as a convenient out-of-the-box
classifier without the need for labeled training data. However, for a given sequence, the method requires each
possible label to be fed through the large NLI model separately. Thus for `N` sequences and `K` classes, a total of
`N*K` forward passes through the model are required. This requirement slows inference considerably, particularly as
`K` grows.
Given (1) an unlabeled corpus and (2) a set of candidate class names, the provided script trains a student model
with a standard classification head with `K` output dimensions. The resulting student model can then be used for
classifying novel text instances with a significant boost in speed and memory performance while retaining similar
classification performance to the original zero-shot model
### Usage
A teacher NLI model can be distilled to a more efficient student model by running `distill_classifier.py`:
```
python distill_classifier.py \
--data_file <unlabeled_data.txt> \
--class_names_file <class_names.txt> \
--output_dir <output_dir>
```
`<unlabeled_data.txt>` should be a text file with a single unlabeled example per line. `<class_names.txt>` is a text file with one class name per line.
Other optional arguments include:
- `--teacher_name_or_path` (default: `roberta-large-mnli`): The name or path of the NLI teacher model.
- `--student_name_or_path` (default: `distillbert-base-uncased`): The name or path of the student model which will
be fine-tuned to copy the teacher predictions.
- `--hypothesis_template` (default `"This example is {}."`): The template used to turn each label into an NLI-style
hypothesis when generating teacher predictions. This template must include a `{}` or similar syntax for the
candidate label to be inserted into the template. For example, the default template is `"This example is {}."` With
the candidate label `sports`, this would be fed into the model like `[CLS] sequence to classify [SEP] This example
is sports . [SEP]`.
- `--multi_class`: Whether or not multiple candidate labels can be true. By default, the scores are normalized such
that the sum of the label likelihoods for each sequence is 1. If `--multi_class` is passed, the labels are
considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment
score vs. the contradiction score. This is sometimes called "multi-class multi-label" classification.
- `--temperature` (default: `1.0`): The temperature applied to the softmax of the teacher model predictions. A
higher temperature results in a student with smoother (lower confidence) predictions than the teacher while a value
`<1` resultings in a higher-confidence, peaked distribution. The default `1.0` is equivalent to no smoothing.
- `--teacher_batch_size` (default: `32`): The batch size used for generating a single set of teacher predictions.
Does not affect training. Use `--per_device_train_batch_size` to change the training batch size.
Any of the arguments in the 🤗 Trainer's
[`TrainingArguments`](https://huggingface.co/transformers/main_classes/trainer.html?#trainingarguments) can also be
modified, such as `--learning_rate`, `--fp16`, `--no_cuda`, `--warmup_steps`, etc. Run `python distill_classifier.py
-h` for a full list of available arguments or consult the [Trainer
documentation](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments).
> **Note**: Distributed and TPU training are not currently supported. Single-node multi-GPU is supported, however,
and will run automatically if multiple GPUs are available.
### Example: Topic classification
> A full colab demo notebook of this example can be found [here](https://colab.research.google.com/drive/1mjBjd0cR8G57ZpsnFCS3ngGyo5nCa9ya?usp=sharing).
Let's say we're interested in classifying news articles into one of four topic categories: "the world", "sports",
"business", or "science/tech". We have an unlabeled dataset, [AG's News](https://huggingface.co/datasets/ag_news),
which corresponds to this problem (in reality AG's News is annotated, but we will pretend it is not for the sake of
example).
We can use an NLI model like `roberta-large-mnli` for zero-shot classification like so:
```python
>>> class_names = ["the world", "sports", "business", "science/tech"]
>>> hypothesis_template = "This text is about {}."
>>> sequence = "A new moon has been discovered in Jupiter's orbit"
>>> zero_shot_classifier = pipeline("zero-shot-classification", model="roberta-large-mnli")
>>> zero_shot_classifier(sequence, class_names, hypothesis_template=hypothesis_template)
{'sequence': "A new moon has been discovered in Jupiter's orbit",
'labels': ['science/tech', 'the world', 'business', 'sports'],
'scores': [0.7035840153694153, 0.18744826316833496, 0.06027870625257492, 0.04868902638554573]}
```
Unfortunately, inference is slow since each of our 4 class names must be fed through the large model for every
sequence to be classified. But with our unlabeled data we can distill the model to a small distilbert classifier to
make future inference much faster.
To run the script, we will need to put each training example (text only) from AG's News on its own line in
`agnews/train_unlabeled.txt`, and each of the four class names in the newline-separated `agnews/class_names.txt`.
Then we can run distillation with the following command:
```bash
python distill_classifier.py \
--data_file ./agnews/unlabeled.txt \
--class_names_files ./agnews/class_names.txt \
--teacher_name_or_path roberta-large-mnli \
--hypothesis_template "This text is about {}." \
--output_dir ./agnews/distilled
```
The script will generate a set of soft zero-shot predictions from `roberta-large-mnli` for each example in
`agnews/unlabeled.txt`. It will then train a student distilbert classifier on the teacher predictions and
save the resulting model in `./agnews/distilled`.
The resulting model can then be loaded and used like any other pre-trained classifier:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("./agnews/distilled")
tokenizer = AutoTokenizer.from_pretrained("./agnews/distilled")
```
and even used trivially with a `TextClassificationPipeline`:
```python
>>> distilled_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
>>> distilled_classifier(sequence)
[[{'label': 'the world', 'score': 0.14899294078350067},
{'label': 'sports', 'score': 0.03205857425928116},
{'label': 'business', 'score': 0.05943061783909798},
{'label': 'science/tech', 'score': 0.7595179080963135}]]
```
> Tip: pass `device=0` when constructing a pipeline to run on a GPU
As we can see, the results of the student closely resemble that of the trainer despite never having seen this
example during training. Now let's do a quick & dirty speed comparison simulating 16K examples with a batch size of
16:
```python
for _ in range(1000):
zero_shot_classifier([sequence] * 16, class_names)
# runs in 1m 23s on a single V100 GPU
```
```python
%%time
for _ in range(1000):
distilled_classifier([sequence] * 16)
# runs in 10.3s on a single V100 GPU
```
As we can see, the distilled student model runs an order of magnitude faster than its teacher NLI model. This is
also a seeting where we only have `K=4` possible labels. The higher the number of classes for a given task, the more
drastic the speedup will be, since the zero-shot teacher's complexity scales linearly with the number of classes.
Since we secretly have access to ground truth labels for AG's news, we can evaluate the accuracy of each model. The
original zero-shot model `roberta-large-mnli` gets an accuracy of 69.3% on the held-out test set. After training a
student on the unlabeled training set, the distilled model gets a similar score of 70.4%.
Lastly, you can share the distilled model with the community and/or use it with our inference API by [uploading it
to the 🤗 Hub](https://huggingface.co/transformers/model_sharing.html). We've uploaded the distilled model from this
example at
[joeddav/distilbert-base-uncased-agnews-student](https://huggingface.co/joeddav/distilbert-base-uncased-agnews-student).

View File

@ -0,0 +1,338 @@
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import List, Optional
import torch
from datasets import Dataset
from torch import nn
from tqdm.auto import tqdm
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
utils,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
DESCRIPTION = """
Distills an NLI-based zero-shot classifier to a smaller, more efficient model with a fixed set of candidate class
names. Useful for speeding up zero-shot classification in cases where labeled training data is not available, but
when only a single fixed set of classes is needed. Takes a teacher NLI model, student classifier model, unlabeled
dataset, and set of K possible class names. Yields a single classifier with K outputs corresponding to the provided
class names.
"""
logger = logging.getLogger(__name__)
@dataclass
class TeacherModelArguments:
teacher_name_or_path: Optional[str] = field(
default="roberta-large-mnli", metadata={"help": "The NLI/zero-shot teacher model to be distilled."}
)
hypothesis_template: Optional[str] = field(
default="This example is {}.",
metadata={
"help": (
"Template used to turn class names into mock hypotheses for teacher NLI model. Must include {{}}"
"where class name is inserted."
)
},
)
teacher_batch_size: Optional[int] = field(
default=32, metadata={"help": "Batch size for generating teacher predictions."}
)
multi_class: Optional[bool] = field(
default=False,
metadata={
"help": (
"Allow multiple classes to be true rather than forcing them to sum to 1 (sometimes called"
"multi-class multi-label classification)."
)
},
)
temperature: Optional[float] = field(
default=1.0, metadata={"help": "Temperature applied to teacher softmax for distillation."}
)
@dataclass
class StudentModelArguments:
student_name_or_path: Optional[str] = field(
default="distilbert-base-uncased", metadata={"help": "The NLI/zero-shot teacher model to be distilled."}
)
@dataclass
class DataTrainingArguments:
data_file: str = field(metadata={"help": "Text file with one unlabeled instance per line."})
class_names_file: str = field(metadata={"help": "Text file with one class name per line."})
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the Rust tokenizers library) or not."},
)
@dataclass
class DistillTrainingArguments(TrainingArguments):
output_dir: Optional[str] = field(
default=None,
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
per_device_train_batch_size: int = field(
default=32, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=128, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
num_train_epochs: float = field(default=1.0, metadata={"help": "Total number of training epochs to perform."})
do_train: bool = field(default=True, metadata={"help": "Whether to run training of student model."})
do_eval: bool = field(
default=True,
metadata={
"help": (
"Whether to evaluate the agreement of the final student predictions and the teacher predictions"
"after training."
)
},
)
save_total_limit: Optional[int] = field(
default=0,
metadata={
"help": (
"Limit the total amount of checkpoints."
"Deletes the older checkpoints in the output_dir. Default is 0 (no checkpoints)."
)
},
)
class DistillationTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
target_p = inputs["labels"]
outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
logits = outputs[0]
loss = -torch.sum(target_p * logits.log_softmax(dim=-1), axis=-1).mean()
if return_outputs:
return loss, outputs
return loss
def read_lines(path):
lines = []
with open(path, "r") as f:
for line in f:
line = line.strip()
if len(line) > 0:
lines.append(line)
return lines
def get_premise_hypothesis_pairs(examples, class_names, hypothesis_template):
premises = []
hypotheses = []
for example in examples:
for name in class_names:
premises.append(example)
hypotheses.append(hypothesis_template.format(name))
return premises, hypotheses
def get_entailment_id(config):
for label, ind in config.label2id.items():
if label.lower().startswith("entail"):
return ind
logging.warning("Could not identify entailment dimension from teacher config label2id. Setting to -1.")
return -1
def get_teacher_predictions(
model_path: str,
examples: List[str],
class_names: List[str],
hypothesis_template: str,
batch_size: int,
temperature: float,
multi_class: bool,
use_fast_tokenizer: bool,
no_cuda: bool,
fp16: bool,
):
"""
Gets predictions by the same method as the zero-shot pipeline but with DataParallel & more efficient batching
"""
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model_config = model.config
if not no_cuda and torch.cuda.is_available():
model = nn.DataParallel(model)
batch_size *= len(model.device_ids)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=use_fast_tokenizer)
premises, hypotheses = get_premise_hypothesis_pairs(examples, class_names, hypothesis_template)
logits = []
for i in tqdm(range(0, len(premises), batch_size)):
batch_premises = premises[i : i + batch_size]
batch_hypotheses = hypotheses[i : i + batch_size]
encodings = tokenizer(
batch_premises,
batch_hypotheses,
padding=True,
truncation="only_first",
return_tensors="pt",
)
with torch.cuda.amp.autocast(enabled=fp16):
with torch.no_grad():
outputs = model(**encodings)
logits.append(outputs.logits.detach().cpu().float())
entail_id = get_entailment_id(model_config)
contr_id = -1 if entail_id == 0 else 0
logits = torch.cat(logits, dim=0) # N*K x 3
nli_logits = logits.reshape(len(examples), len(class_names), -1)[..., [contr_id, entail_id]] # N x K x 2
if multi_class:
# softmax over (contr, entail) logits for each class independently
nli_prob = (nli_logits / temperature).softmax(-1)
else:
# softmax over entail logits across classes s.t. class probabilities sum to 1.
nli_prob = (nli_logits / temperature).softmax(1)
return nli_prob[..., 1] # N x K
def main():
parser = HfArgumentParser(
(DataTrainingArguments, TeacherModelArguments, StudentModelArguments, DistillTrainingArguments),
description=DESCRIPTION,
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
data_args, teacher_args, student_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
data_args, teacher_args, student_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
utils.logging.set_verbosity_info()
utils.logging.enable_default_handler()
utils.logging.enable_explicit_format()
if training_args.local_rank != -1:
raise ValueError("Distributed training is not currently supported.")
if training_args.tpu_num_cores is not None:
raise ValueError("TPU acceleration is not currently supported.")
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. read in data
examples = read_lines(data_args.data_file)
class_names = read_lines(data_args.class_names_file)
# 2. get teacher predictions and load into dataset
logger.info("Generating predictions from zero-shot teacher model")
teacher_soft_preds = get_teacher_predictions(
teacher_args.teacher_name_or_path,
examples,
class_names,
teacher_args.hypothesis_template,
teacher_args.teacher_batch_size,
teacher_args.temperature,
teacher_args.multi_class,
data_args.use_fast_tokenizer,
training_args.no_cuda,
training_args.fp16,
)
dataset = Dataset.from_dict(
{
"text": examples,
"labels": teacher_soft_preds,
}
)
# 3. create student
logger.info("Initializing student model")
model = AutoModelForSequenceClassification.from_pretrained(
student_args.student_name_or_path, num_labels=len(class_names)
)
tokenizer = AutoTokenizer.from_pretrained(student_args.student_name_or_path, use_fast=data_args.use_fast_tokenizer)
model.config.id2label = {i: label for i, label in enumerate(class_names)}
model.config.label2id = {label: i for i, label in enumerate(class_names)}
# 4. train student on teacher predictions
dataset = dataset.map(tokenizer, input_columns="text")
dataset.set_format("torch")
def compute_metrics(p, return_outputs=False):
preds = p.predictions.argmax(-1)
proxy_labels = p.label_ids.argmax(-1) # "label_ids" are actually distributions
return {"agreement": (preds == proxy_labels).mean().item()}
trainer = DistillationTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset,
compute_metrics=compute_metrics,
)
if training_args.do_train:
logger.info("Training student model on teacher predictions")
trainer.train()
if training_args.do_eval:
agreement = trainer.evaluate(eval_dataset=dataset)["eval_agreement"]
logger.info(f"Agreement of student and teacher predictions: {agreement * 100:0.2f}%")
trainer.save_model()
if __name__ == "__main__":
main()