mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 04:40:06 +06:00
Update ruff to 0.11.2
(#36962)
* update * update * update --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
bc1c90a755
commit
c6814b4ee8
2
setup.py
2
setup.py
@ -162,7 +162,7 @@ _deps = [
|
||||
"rhoknp>=1.1.0,<1.3.1",
|
||||
"rjieba",
|
||||
"rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1",
|
||||
"ruff==0.5.1",
|
||||
"ruff==0.11.2",
|
||||
"sacrebleu>=1.4.12,<2.0.0",
|
||||
"sacremoses",
|
||||
"safetensors>=0.4.3",
|
||||
|
@ -167,9 +167,9 @@ class Tool:
|
||||
)
|
||||
for input_name, input_content in self.inputs.items():
|
||||
assert isinstance(input_content, dict), f"Input '{input_name}' should be a dictionary."
|
||||
assert (
|
||||
"type" in input_content and "description" in input_content
|
||||
), f"Input '{input_name}' should have keys 'type' and 'description', has only {list(input_content.keys())}."
|
||||
assert "type" in input_content and "description" in input_content, (
|
||||
f"Input '{input_name}' should have keys 'type' and 'description', has only {list(input_content.keys())}."
|
||||
)
|
||||
if input_content["type"] not in authorized_types:
|
||||
raise Exception(
|
||||
f"Input '{input_name}': type '{input_content['type']}' is not an authorized value, should be one of {authorized_types}."
|
||||
|
@ -288,7 +288,7 @@ def add_fast_image_processor_to_dummy(fast_image_processor_name: str):
|
||||
if new_dummy_object not in content:
|
||||
if index_new != len(image_processor_names) - 1:
|
||||
# add the dummy object just before the next ImageProcessorFast
|
||||
first_line = f"class {image_processor_names[index_new+1]}(metaclass=DummyObject):"
|
||||
first_line = f"class {image_processor_names[index_new + 1]}(metaclass=DummyObject):"
|
||||
updated_content = content.replace(first_line, new_dummy_object + "\n\n" + first_line)
|
||||
else:
|
||||
# add the dummy object at the very end
|
||||
@ -313,11 +313,9 @@ def add_fast_image_processor_to_doc(fast_image_processor_name: str, model_name:
|
||||
raise ValueError(f"No doc files found for {model_name}")
|
||||
|
||||
base_doc_string = (
|
||||
f"## {fast_image_processor_name[:-4]}\n\n" f"[[autodoc]] {fast_image_processor_name[:-4]}\n" " - preprocess"
|
||||
)
|
||||
fast_doc_string = (
|
||||
f"## {fast_image_processor_name}\n\n" f"[[autodoc]] {fast_image_processor_name}\n" " - preprocess"
|
||||
f"## {fast_image_processor_name[:-4]}\n\n[[autodoc]] {fast_image_processor_name[:-4]}\n - preprocess"
|
||||
)
|
||||
fast_doc_string = f"## {fast_image_processor_name}\n\n[[autodoc]] {fast_image_processor_name}\n - preprocess"
|
||||
|
||||
for doc_file in doc_files:
|
||||
with open(doc_file, "r", encoding="utf-8") as f:
|
||||
@ -385,7 +383,7 @@ def add_fast_image_processor_to_tests(fast_image_processor_name: str, model_name
|
||||
# add the fast image processor to the imports
|
||||
base_import_string = f" from transformers import {fast_image_processor_name[:-4]}"
|
||||
fast_import_string = (
|
||||
" if is_torchvision_available():\n" f" from transformers import {fast_image_processor_name}"
|
||||
f" if is_torchvision_available():\n from transformers import {fast_image_processor_name}"
|
||||
)
|
||||
if fast_import_string not in updated_content:
|
||||
updated_content = updated_content.replace(base_import_string, base_import_string + "\n\n" + fast_import_string)
|
||||
@ -546,17 +544,17 @@ def add_fast_image_processor_file(
|
||||
" # For an example of a fast image processor requiring more complex augmentations, see `LlavaNextImageProcessorFast`.\n\n"
|
||||
" # Default values should be checked against the slow image processor\n"
|
||||
" # None values left after checking can be removed\n"
|
||||
f' resample = {default_args_dict.get("resample")}\n'
|
||||
f' image_mean = {default_args_dict.get("image_mean")}\n'
|
||||
f' image_std = {default_args_dict.get("image_std")}\n'
|
||||
f' size = {default_args_dict.get("size")}\n'
|
||||
f' default_to_square = {default_args_dict.get("default_to_square")}\n'
|
||||
f' crop_size = {default_args_dict.get("crop_size")}\n'
|
||||
f' do_resize = {default_args_dict.get("do_resize")}\n'
|
||||
f' do_center_crop = {default_args_dict.get("do_center_crop")}\n'
|
||||
f' do_rescale = {default_args_dict.get("do_rescale")}\n'
|
||||
f' do_normalize = {default_args_dict.get("do_normalize")}\n'
|
||||
f' do_convert_rgb = {default_args_dict.get("do_convert_rgb")}\n\n\n'
|
||||
f" resample = {default_args_dict.get('resample')}\n"
|
||||
f" image_mean = {default_args_dict.get('image_mean')}\n"
|
||||
f" image_std = {default_args_dict.get('image_std')}\n"
|
||||
f" size = {default_args_dict.get('size')}\n"
|
||||
f" default_to_square = {default_args_dict.get('default_to_square')}\n"
|
||||
f" crop_size = {default_args_dict.get('crop_size')}\n"
|
||||
f" do_resize = {default_args_dict.get('do_resize')}\n"
|
||||
f" do_center_crop = {default_args_dict.get('do_center_crop')}\n"
|
||||
f" do_rescale = {default_args_dict.get('do_rescale')}\n"
|
||||
f" do_normalize = {default_args_dict.get('do_normalize')}\n"
|
||||
f" do_convert_rgb = {default_args_dict.get('do_convert_rgb')}\n\n\n"
|
||||
f'__all__ = ["{fast_image_processor_name}"]\n'
|
||||
)
|
||||
|
||||
|
@ -189,7 +189,7 @@ def infer_shapes(nlp: Pipeline, framework: str) -> tuple[list[str], list[str], d
|
||||
raise ValueError(f"Unable to infer tensor axes ({len(tensor.shape)})")
|
||||
else:
|
||||
seq_axes = [dim for dim, shape in enumerate(tensor.shape) if shape == seq_len]
|
||||
axes.update({dim: "sequence" for dim in seq_axes})
|
||||
axes.update(dict.fromkeys(seq_axes, "sequence"))
|
||||
|
||||
print(f"Found {'input' if is_input else 'output'} {name} with shape: {axes}")
|
||||
return axes
|
||||
|
@ -226,7 +226,7 @@ def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_
|
||||
no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer]
|
||||
|
||||
if no_answer_probs is None:
|
||||
no_answer_probs = {k: 0.0 for k in preds}
|
||||
no_answer_probs = dict.fromkeys(preds, 0.0)
|
||||
|
||||
exact, f1 = get_raw_scores(examples, preds)
|
||||
|
||||
|
@ -101,7 +101,7 @@ if is_tf_available():
|
||||
|
||||
return tf.data.Dataset.from_generator(
|
||||
gen,
|
||||
({k: tf.int32 for k in input_names}, label_type),
|
||||
(dict.fromkeys(input_names, tf.int32), label_type),
|
||||
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||||
)
|
||||
|
||||
|
@ -68,7 +68,7 @@ deps = {
|
||||
"rhoknp": "rhoknp>=1.1.0,<1.3.1",
|
||||
"rjieba": "rjieba",
|
||||
"rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1",
|
||||
"ruff": "ruff==0.5.1",
|
||||
"ruff": "ruff==0.11.2",
|
||||
"sacrebleu": "sacrebleu>=1.4.12,<2.0.0",
|
||||
"sacremoses": "sacremoses",
|
||||
"safetensors": "safetensors>=0.4.3",
|
||||
|
@ -2749,9 +2749,7 @@ class SynthIDTextWatermarkLogitsProcessor(LogitsProcessor):
|
||||
ngram keys (batch_size, num_ngrams, depth).
|
||||
"""
|
||||
if len(ngrams.shape) != 3:
|
||||
raise ValueError(
|
||||
"Ngrams should be of shape (batch_size, num_ngrams, ngram_len), but" f" is {ngrams.shape}"
|
||||
)
|
||||
raise ValueError(f"Ngrams should be of shape (batch_size, num_ngrams, ngram_len), but is {ngrams.shape}")
|
||||
if ngrams.shape[2] != self.ngram_len:
|
||||
raise ValueError(
|
||||
"Ngrams should be of shape (batch_size, num_ngrams, ngram_len),"
|
||||
@ -2836,7 +2834,7 @@ class SynthIDTextWatermarkLogitsProcessor(LogitsProcessor):
|
||||
def _check_input_ids_shape(self, input_ids: torch.LongTensor):
|
||||
"""Checks the shape of input ids."""
|
||||
if len(input_ids.shape) != 2:
|
||||
raise ValueError("Input ids should be of shape (batch_size, input_len), but is" f" {input_ids.shape}")
|
||||
raise ValueError(f"Input ids should be of shape (batch_size, input_len), but is {input_ids.shape}")
|
||||
|
||||
def compute_g_values(self, input_ids: torch.LongTensor) -> torch.LongTensor:
|
||||
"""
|
||||
|
@ -1678,7 +1678,7 @@ class GenerationMixin:
|
||||
if execution_device_map is None:
|
||||
return None
|
||||
elif len(execution_device_map) == 1 and "" in execution_device_map:
|
||||
return {idx: execution_device_map[""] for idx in range(num_hidden_layers)}
|
||||
return dict.fromkeys(range(num_hidden_layers), execution_device_map[""])
|
||||
layer_device_map = {}
|
||||
for layer in execution_device_map:
|
||||
for idx in range(num_hidden_layers):
|
||||
|
@ -106,11 +106,11 @@ def prepare_for_hqq_linear(model, quantization_config=None, modules_to_not_conve
|
||||
|
||||
if any(key in linear_tags for key in quant_config.keys()):
|
||||
# If the user doesn't specify a key from get_linear_tags, the layer is not quantized via (key, None)
|
||||
patch_params = {key: None for key in linear_tags}
|
||||
patch_params = dict.fromkeys(linear_tags)
|
||||
patch_params.update(quant_config)
|
||||
else:
|
||||
# Same quant_config for all layers
|
||||
patch_params = {k: quant_config for k in linear_tags}
|
||||
patch_params = dict.fromkeys(linear_tags, quant_config)
|
||||
|
||||
model, has_been_replaced = _prepare_for_hqq_linear(
|
||||
model, patch_params=patch_params, has_been_replaced=has_been_replaced
|
||||
|
@ -21,9 +21,9 @@ def tpu_spmd_dataloader(dataloader: DataLoader):
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.distributed.parallel_loader as pl
|
||||
|
||||
assert isinstance(
|
||||
dataloader, pl.MpDeviceLoader
|
||||
), "The dataloader must be a `torch_xla.distributed.parallel_loader.MpDeviceLoader`."
|
||||
assert isinstance(dataloader, pl.MpDeviceLoader), (
|
||||
"The dataloader must be a `torch_xla.distributed.parallel_loader.MpDeviceLoader`."
|
||||
)
|
||||
|
||||
# This is to support PyTorch/XLA FSDP via SPMD.
|
||||
# Here we shard the input data's 0th dim across the fsdp axis.
|
||||
|
@ -154,7 +154,7 @@ def flax_shard_checkpoint(params, max_shard_size="10GB"):
|
||||
weight_map = {}
|
||||
shards = {}
|
||||
for idx, shard in enumerate(sharded_state_dicts):
|
||||
shard_file = FLAX_WEIGHTS_NAME.replace(".msgpack", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.msgpack")
|
||||
shard_file = FLAX_WEIGHTS_NAME.replace(".msgpack", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.msgpack")
|
||||
shards[shard_file] = shard
|
||||
for weight_name in shard.keys():
|
||||
weight_map[weight_name] = shard_file
|
||||
|
@ -701,7 +701,7 @@ def tf_shard_checkpoint(weights, max_shard_size="10GB", weights_name: str = TF2_
|
||||
weight_map = {}
|
||||
shards = {}
|
||||
for idx, shard in enumerate(sharded_state_dicts):
|
||||
shard_file = weights_name.replace(".h5", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.h5")
|
||||
shard_file = weights_name.replace(".h5", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.h5")
|
||||
shard_file = shard_file.replace(
|
||||
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
|
||||
)
|
||||
|
@ -2509,9 +2509,9 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
total_decoder_name="",
|
||||
total_encoder_name="",
|
||||
):
|
||||
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
||||
encoder_pointer, nn.Module
|
||||
), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
|
||||
assert isinstance(decoder_pointer, nn.Module) and isinstance(encoder_pointer, nn.Module), (
|
||||
f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
|
||||
)
|
||||
if hasattr(decoder_pointer, "weight"):
|
||||
assert hasattr(encoder_pointer, "weight")
|
||||
encoder_pointer.weight = decoder_pointer.weight
|
||||
@ -2525,9 +2525,9 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
encoder_modules = encoder_pointer._modules
|
||||
decoder_modules = decoder_pointer._modules
|
||||
if len(decoder_modules) > 0:
|
||||
assert (
|
||||
len(encoder_modules) > 0
|
||||
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
||||
assert len(encoder_modules) > 0, (
|
||||
f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
||||
)
|
||||
|
||||
all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
|
||||
encoder_layer_pos = 0
|
||||
@ -3571,7 +3571,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
f"Please upgrade accelerate with `pip install -U accelerate`"
|
||||
)
|
||||
# init state_dict for this shard
|
||||
shard_state_dict = {name: "" for name in shard}
|
||||
shard_state_dict = dict.fromkeys(shard, "")
|
||||
for module_name in shard:
|
||||
# skip to collect this weight again
|
||||
if shard_state_dict.get(module_name) != "":
|
||||
@ -4814,7 +4814,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
param_device_map = expand_device_map(device_map, checkpoint_keys)
|
||||
str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
|
||||
if sharded_metadata is None:
|
||||
weight_map = {p: checkpoint_files[0] for p in checkpoint_keys}
|
||||
weight_map = dict.fromkeys(checkpoint_keys, checkpoint_files[0])
|
||||
else:
|
||||
folder = os.path.sep.join(checkpoint_files[0].split(os.path.sep)[:-1])
|
||||
# Fix the weight map keys according to the key mapping
|
||||
@ -5446,9 +5446,9 @@ class PoolerEndLogits(nn.Module):
|
||||
Returns:
|
||||
`torch.FloatTensor`: The end logits for SQuAD.
|
||||
"""
|
||||
assert (
|
||||
start_states is not None or start_positions is not None
|
||||
), "One of start_states, start_positions should be not None"
|
||||
assert start_states is not None or start_positions is not None, (
|
||||
"One of start_states, start_positions should be not None"
|
||||
)
|
||||
if start_positions is not None:
|
||||
slen, hsz = hidden_states.shape[-2:]
|
||||
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
||||
@ -5514,9 +5514,9 @@ class PoolerAnswerClass(nn.Module):
|
||||
"""
|
||||
# No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
|
||||
hsz = hidden_states.shape[-1]
|
||||
assert (
|
||||
start_states is not None or start_positions is not None
|
||||
), "One of start_states, start_positions should be not None"
|
||||
assert start_states is not None or start_positions is not None, (
|
||||
"One of start_states, start_positions should be not None"
|
||||
)
|
||||
if start_positions is not None:
|
||||
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
||||
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)
|
||||
|
@ -1058,7 +1058,7 @@ class AltCLIPVisionEmbeddings(nn.Module):
|
||||
batch_size, _, height, width = pixel_values.shape
|
||||
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
||||
raise ValueError(
|
||||
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
|
||||
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
||||
)
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
|
@ -150,7 +150,7 @@ def _load_model(ckpt_path, device, use_small=False, model_type="text"):
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
n_params = model.num_parameters(exclude_embeddings=True)
|
||||
val_loss = checkpoint["best_val_loss"].item()
|
||||
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
|
||||
logger.info(f"model loaded: {round(n_params / 1e6, 1)}M params, {round(val_loss, 3)} loss")
|
||||
model.eval()
|
||||
model.to(device)
|
||||
del checkpoint, state_dict
|
||||
|
@ -103,7 +103,7 @@ class BarkProcessor(ProcessorMixin):
|
||||
)
|
||||
if speaker_embeddings_path is None:
|
||||
logger.warning(
|
||||
f"""`{os.path.join(pretrained_processor_name_or_path,speaker_embeddings_dict_path)}` does not exists
|
||||
f"""`{os.path.join(pretrained_processor_name_or_path, speaker_embeddings_dict_path)}` does not exists
|
||||
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
|
||||
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`."""
|
||||
)
|
||||
@ -202,7 +202,7 @@ class BarkProcessor(ProcessorMixin):
|
||||
)
|
||||
if path is None:
|
||||
raise ValueError(
|
||||
f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"),voice_preset_paths[key])}` does not exists
|
||||
f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"), voice_preset_paths[key])}` does not exists
|
||||
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
|
||||
embeddings."""
|
||||
)
|
||||
|
@ -329,7 +329,7 @@ class BridgeTowerVisionEmbeddings(nn.Module):
|
||||
batch_size, _, height, width = pixel_values.shape
|
||||
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
||||
raise ValueError(
|
||||
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
|
||||
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
||||
)
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
|
@ -234,7 +234,7 @@ class ChineseCLIPVisionEmbeddings(nn.Module):
|
||||
batch_size, _, height, width = pixel_values.shape
|
||||
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
||||
raise ValueError(
|
||||
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
|
||||
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
||||
)
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
|
@ -74,7 +74,7 @@ def rename_state_dict(state_dict):
|
||||
# replace sequential layers with list
|
||||
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
|
||||
|
||||
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.")
|
||||
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer) // 3}.linear.")
|
||||
elif re.match(text_projection_pattern, key):
|
||||
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
|
||||
|
||||
|
@ -242,7 +242,7 @@ class CLIPVisionEmbeddings(nn.Module):
|
||||
batch_size, _, height, width = pixel_values.shape
|
||||
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
||||
raise ValueError(
|
||||
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
|
||||
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
||||
)
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
|
@ -209,7 +209,7 @@ class CLIPSegVisionEmbeddings(nn.Module):
|
||||
batch_size, _, height, width = pixel_values.shape
|
||||
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
||||
raise ValueError(
|
||||
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
|
||||
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
||||
)
|
||||
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
||||
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||||
|
@ -144,7 +144,7 @@ class ClvpEncoderConfig(PretrainedConfig):
|
||||
# this is to make sure that we can load only text or speech configs from the nested ClvpConfig.
|
||||
if config_type not in cls.base_config_key:
|
||||
raise ValueError(
|
||||
f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}"
|
||||
f"We can only load either 'text_config' or 'speech_config' but you are trying to load{config_type}"
|
||||
)
|
||||
|
||||
# get the text config dict if we are loading from ClvpConfig
|
||||
|
@ -190,8 +190,8 @@ class CodeLlamaTokenizerFast(PreTrainedTokenizerFast):
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
|
@ -198,8 +198,8 @@ class CohereTokenizerFast(PreTrainedTokenizerFast):
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
|
@ -127,9 +127,9 @@ def convert_data2vec_checkpoint_to_pytorch(
|
||||
|
||||
# self-attention output
|
||||
self_output: BertSelfOutput = layer.attention.output
|
||||
assert (
|
||||
self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape
|
||||
), f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}"
|
||||
assert self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape, (
|
||||
f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}"
|
||||
)
|
||||
self_output.dense.weight = data2vec_layer.self_attn.out_proj.weight
|
||||
self_output.dense.bias = data2vec_layer.self_attn.out_proj.bias
|
||||
self_output.LayerNorm.weight = data2vec_layer.self_attn_layer_norm.weight
|
||||
@ -137,17 +137,17 @@ def convert_data2vec_checkpoint_to_pytorch(
|
||||
|
||||
# intermediate
|
||||
intermediate: BertIntermediate = layer.intermediate
|
||||
assert (
|
||||
intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape
|
||||
), f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}"
|
||||
assert intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape, (
|
||||
f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}"
|
||||
)
|
||||
intermediate.dense.weight = data2vec_layer.fc1.weight
|
||||
intermediate.dense.bias = data2vec_layer.fc1.bias
|
||||
|
||||
# output
|
||||
bert_output: BertOutput = layer.output
|
||||
assert (
|
||||
bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape
|
||||
), f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}"
|
||||
assert bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape, (
|
||||
f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}"
|
||||
)
|
||||
bert_output.dense.weight = data2vec_layer.fc2.weight
|
||||
bert_output.dense.bias = data2vec_layer.fc2.bias
|
||||
bert_output.LayerNorm.weight = data2vec_layer.final_layer_norm.weight
|
||||
|
@ -1491,7 +1491,7 @@ class TFData2VecVisionFCNHead(keras.layers.Layer):
|
||||
kernel_size=kernel_size,
|
||||
padding="same",
|
||||
dilation=dilation,
|
||||
name=f"conv_module_{i+2}",
|
||||
name=f"conv_module_{i + 2}",
|
||||
)
|
||||
)
|
||||
if self.num_convs == 0:
|
||||
|
@ -180,9 +180,9 @@ def convert_bort_checkpoint_to_pytorch(bort_checkpoint_path: str, pytorch_dump_f
|
||||
gluon_param = to_torch(params[gluon_param])
|
||||
shape_gluon = gluon_param.shape
|
||||
|
||||
assert (
|
||||
shape_hf == shape_gluon
|
||||
), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"
|
||||
assert shape_hf == shape_gluon, (
|
||||
f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"
|
||||
)
|
||||
|
||||
return gluon_param
|
||||
|
||||
|
@ -427,7 +427,7 @@ class SubWordJapaneseTokenizer:
|
||||
)
|
||||
keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
|
||||
blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
|
||||
self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks})
|
||||
self.content_trans1 = str.maketrans(dict.fromkeys(keisen + blocks, "<BLOCK>"))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.ids_to_tokens)
|
||||
|
@ -200,7 +200,7 @@ def fix_jukebox_keys(state_dict, model_state_dict, key_prefix, mapping):
|
||||
# handle missmatched shape
|
||||
elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape:
|
||||
val = model_state_dict[f"{key_prefix}.{key}"]
|
||||
print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match")
|
||||
print(f"{original_key}-> {key} : \nshape {val.shape} and {value.shape}, do not match")
|
||||
key = original_key
|
||||
|
||||
mapping[key] = original_key
|
||||
|
@ -2366,7 +2366,7 @@ class JukeboxModel(JukeboxPreTrainedModel):
|
||||
new_tokens = sample_tokens - previous_sampled_tokens.shape[1]
|
||||
|
||||
logger.info(
|
||||
f"Sampling {sample_tokens} tokens for [{start},{start+sample_tokens}]. Conditioning on"
|
||||
f"Sampling {sample_tokens} tokens for [{start},{start + sample_tokens}]. Conditioning on"
|
||||
f" {conditioning_tokens} tokens"
|
||||
)
|
||||
|
||||
@ -2390,7 +2390,7 @@ class JukeboxModel(JukeboxPreTrainedModel):
|
||||
name = ["Ancestral", "Primed"][music_tokens_i.shape[1] == 0]
|
||||
iterator.set_description(
|
||||
f"[prior level {level}] {name} Sampling {sample_tokens} tokens out of"
|
||||
f" {self.total_length//prior.raw_to_tokens}",
|
||||
f" {self.total_length // prior.raw_to_tokens}",
|
||||
refresh=True,
|
||||
)
|
||||
tokens_i = prior.sample(
|
||||
|
@ -154,7 +154,7 @@ class OpenLlamaConfig(PretrainedConfig):
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
||||
f"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
|
@ -139,9 +139,9 @@ def load_tf_weights_in_realm(model, config, tf_checkpoint_path):
|
||||
elif m_name == "kernel":
|
||||
array = np.transpose(array)
|
||||
try:
|
||||
assert (
|
||||
pointer.shape == array.shape
|
||||
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
assert pointer.shape == array.shape, (
|
||||
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
)
|
||||
except AssertionError as e:
|
||||
e.args += (pointer.shape, array.shape)
|
||||
raise
|
||||
|
@ -579,7 +579,7 @@ class Speech2Text2Decoder(Speech2Text2PreTrainedModel):
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache =" " False`..."
|
||||
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
|
@ -1095,9 +1095,9 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc
|
||||
batch_size, sequence_length = shape_list(input_ids)[:2]
|
||||
else:
|
||||
batch_size, sequence_length = shape_list(inputs_embeds)[:2]
|
||||
assert (
|
||||
self.config.pad_token_id is not None or batch_size == 1
|
||||
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
||||
assert self.config.pad_token_id is not None or batch_size == 1, (
|
||||
"Cannot handle batch sizes > 1 if no padding token is defined."
|
||||
)
|
||||
|
||||
if not tf.is_tensor(sequence_lengths):
|
||||
in_logits = logits[0:batch_size, sequence_lengths]
|
||||
|
@ -155,9 +155,9 @@ def load_tf_weights_in_transfo_xl(model, config, tf_path):
|
||||
p_i.data = torch.from_numpy(arr_i)
|
||||
else:
|
||||
try:
|
||||
assert (
|
||||
pointer.shape == array.shape
|
||||
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
assert pointer.shape == array.shape, (
|
||||
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
)
|
||||
except AssertionError as e:
|
||||
e.args += (pointer.shape, array.shape)
|
||||
raise
|
||||
@ -1238,9 +1238,9 @@ class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel):
|
||||
else:
|
||||
batch_size, sequence_length = inputs_embeds.shape[:2]
|
||||
|
||||
assert (
|
||||
self.config.pad_token_id is not None or batch_size == 1
|
||||
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
||||
assert self.config.pad_token_id is not None or batch_size == 1, (
|
||||
"Cannot handle batch sizes > 1 if no padding token is defined."
|
||||
)
|
||||
if self.config.pad_token_id is None:
|
||||
sequence_lengths = -1
|
||||
else:
|
||||
|
@ -588,9 +588,9 @@ class XLMProphetNetPositionalEmbeddings(nn.Embedding):
|
||||
super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id)
|
||||
|
||||
def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None):
|
||||
assert (position_ids is None) or (
|
||||
self.padding_idx is None
|
||||
), "If position_ids is pre-computed then padding_idx should not be set."
|
||||
assert (position_ids is None) or (self.padding_idx is None), (
|
||||
"If position_ids is pre-computed then padding_idx should not be set."
|
||||
)
|
||||
|
||||
if position_ids is None:
|
||||
if past_key_values is not None:
|
||||
@ -784,9 +784,9 @@ class XLMProphetNetNgramSelfAttention(nn.Module):
|
||||
self.head_dim = config.hidden_size // self.num_attn_heads
|
||||
self.ngram = config.ngram
|
||||
|
||||
assert (
|
||||
self.head_dim * self.num_attn_heads == config.hidden_size
|
||||
), "config.hidden_size must be divisible by num_attn_heads"
|
||||
assert self.head_dim * self.num_attn_heads == config.hidden_size, (
|
||||
"config.hidden_size must be divisible by num_attn_heads"
|
||||
)
|
||||
# key, value, query projection
|
||||
self.key_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.value_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
@ -1041,9 +1041,9 @@ class XLMProphetNetNgramSelfAttention(nn.Module):
|
||||
|
||||
if predict_relative_position_buckets is None:
|
||||
key_sequence_length = attn_weights.shape[-1]
|
||||
assert (
|
||||
position_ids[0][0] == key_sequence_length - 1
|
||||
), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)"
|
||||
assert position_ids[0][0] == key_sequence_length - 1, (
|
||||
"`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)"
|
||||
)
|
||||
relative_positions = (
|
||||
torch.arange(0, key_sequence_length)
|
||||
.unsqueeze(0)
|
||||
@ -1313,9 +1313,9 @@ class XLMProphetNetEncoder(XLMProphetNetPreTrainedModel):
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
if head_mask is not None:
|
||||
assert head_mask.size()[0] == (
|
||||
len(self.layers)
|
||||
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
assert head_mask.size()[0] == (len(self.layers)), (
|
||||
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
)
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_hidden_states = encoder_hidden_states + (hidden_states,)
|
||||
@ -1488,9 +1488,9 @@ class XLMProphetNetDecoder(XLMProphetNetPreTrainedModel):
|
||||
|
||||
# prepare attention mask
|
||||
if past_key_values is not None:
|
||||
assert (
|
||||
hidden_states.size(1) == 1
|
||||
), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1"
|
||||
assert hidden_states.size(1) == 1, (
|
||||
"At the moment `use_cache` is only supported for `decoder_input_ids` of length 1"
|
||||
)
|
||||
|
||||
ngram_hidden_states = [
|
||||
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1)
|
||||
|
@ -114,7 +114,7 @@ class DepthProConfig(PretrainedConfig):
|
||||
# scaled_images_ratios is sorted
|
||||
if scaled_images_ratios != sorted(scaled_images_ratios):
|
||||
raise ValueError(
|
||||
f"Values in scaled_images_ratios={scaled_images_ratios} " "should be sorted from low to high"
|
||||
f"Values in scaled_images_ratios={scaled_images_ratios} should be sorted from low to high"
|
||||
)
|
||||
|
||||
# scaled_images_ratios, scaled_images_overlap_ratios, scaled_images_feature_dims should be consistent
|
||||
|
@ -275,9 +275,9 @@ class FlaxTransformerBlock(nn.Module):
|
||||
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
||||
|
||||
def setup(self):
|
||||
assert (
|
||||
self.config.dim % self.config.n_heads == 0
|
||||
), f"Hidden size {self.config.dim} not dividable by number of heads {self.config.n_heads}"
|
||||
assert self.config.dim % self.config.n_heads == 0, (
|
||||
f"Hidden size {self.config.dim} not dividable by number of heads {self.config.n_heads}"
|
||||
)
|
||||
|
||||
self.attention = FlaxMultiHeadSelfAttention(self.config, dtype=self.dtype)
|
||||
self.sa_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
|
||||
|
@ -269,9 +269,9 @@ class TFTransformerBlock(keras.layers.Layer):
|
||||
self.activation = config.activation
|
||||
self.output_attentions = config.output_attentions
|
||||
|
||||
assert (
|
||||
config.dim % config.n_heads == 0
|
||||
), f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}"
|
||||
assert config.dim % config.n_heads == 0, (
|
||||
f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}"
|
||||
)
|
||||
|
||||
self.attention = TFMultiHeadSelfAttention(config, name="attention")
|
||||
self.sa_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm")
|
||||
|
@ -137,7 +137,7 @@ if __name__ == "__main__":
|
||||
dest_dir = f"converted-{src_file.name}" if args.dest is None else args.dest
|
||||
dest_dir = Path(dest_dir)
|
||||
assert src_file.exists()
|
||||
assert (
|
||||
args.type is not None
|
||||
), "Please specify the component type of the DPR model to convert: 'ctx_encoder', 'question_encoder' or 'reader'."
|
||||
assert args.type is not None, (
|
||||
"Please specify the component type of the DPR model to convert: 'ctx_encoder', 'question_encoder' or 'reader'."
|
||||
)
|
||||
convert(args.type, src_file, dest_dir)
|
||||
|
@ -170,9 +170,9 @@ class CustomDPRReaderTokenizerMixin:
|
||||
texts = texts if not isinstance(texts, str) else [texts]
|
||||
n_passages = len(titles)
|
||||
questions = questions if not isinstance(questions, str) else [questions] * n_passages
|
||||
assert len(titles) == len(
|
||||
texts
|
||||
), f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
|
||||
assert len(titles) == len(texts), (
|
||||
f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
|
||||
)
|
||||
encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"]
|
||||
encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"]
|
||||
encoded_inputs = {
|
||||
|
@ -119,7 +119,7 @@ def rename_key(name):
|
||||
if "refinenet" in name:
|
||||
layer_idx = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
|
||||
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
|
||||
name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4)}")
|
||||
name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx - 4)}")
|
||||
if "out_conv" in name:
|
||||
name = name.replace("out_conv", "projection")
|
||||
if "resConfUnit1" in name:
|
||||
|
@ -107,7 +107,7 @@ def rename_key(name):
|
||||
if "refinenet" in name:
|
||||
layer_idx = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
|
||||
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
|
||||
name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4)}")
|
||||
name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx - 4)}")
|
||||
if "out_conv" in name:
|
||||
name = name.replace("out_conv", "projection")
|
||||
if "resConfUnit1" in name:
|
||||
|
@ -617,8 +617,7 @@ class EncodecModel(EncodecPreTrainedModel):
|
||||
bandwidth = self.config.target_bandwidths[0]
|
||||
if bandwidth not in self.config.target_bandwidths:
|
||||
raise ValueError(
|
||||
f"This model doesn't support the bandwidth {bandwidth}. "
|
||||
f"Select one of {self.config.target_bandwidths}."
|
||||
f"This model doesn't support the bandwidth {bandwidth}. Select one of {self.config.target_bandwidths}."
|
||||
)
|
||||
|
||||
_, channels, input_length = input_values.shape
|
||||
|
@ -399,13 +399,11 @@ def map_structure_with_atom_order(in_list: list, first_call: bool = True) -> lis
|
||||
|
||||
|
||||
@functools.lru_cache(maxsize=None)
|
||||
def load_stereo_chemical_props() -> (
|
||||
Tuple[
|
||||
Mapping[str, List[Bond]],
|
||||
Mapping[str, List[Bond]],
|
||||
Mapping[str, List[BondAngle]],
|
||||
]
|
||||
):
|
||||
def load_stereo_chemical_props() -> Tuple[
|
||||
Mapping[str, List[Bond]],
|
||||
Mapping[str, List[Bond]],
|
||||
Mapping[str, List[BondAngle]],
|
||||
]:
|
||||
"""Load stereo_chemical_props.txt into a nice structure.
|
||||
|
||||
Load literature values for bond lengths and bond angles and translate bond angles into the length of the opposite
|
||||
|
@ -1495,9 +1495,9 @@ class FlavaImageCodebookLayerGroup(nn.Module):
|
||||
blocks = OrderedDict()
|
||||
for i in range(num_blocks):
|
||||
if i == 0:
|
||||
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
|
||||
blocks[f"block_{i + 1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
|
||||
else:
|
||||
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
|
||||
blocks[f"block_{i + 1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
|
||||
|
||||
if use_pool:
|
||||
blocks["pool"] = nn.MaxPool2d(kernel_size=2)
|
||||
|
@ -539,9 +539,9 @@ class FSMTEncoder(nn.Module):
|
||||
all_attentions = () if output_attentions else None
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
if head_mask is not None:
|
||||
assert head_mask.size()[0] == (
|
||||
len(self.layers)
|
||||
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
assert head_mask.size()[0] == (len(self.layers)), (
|
||||
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
)
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
x = x.transpose(0, 1) # T x B x C -> B x T x C
|
||||
@ -960,9 +960,9 @@ class Attention(nn.Module):
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
|
||||
if layer_head_mask is not None:
|
||||
assert layer_head_mask.size() == (
|
||||
self.num_heads,
|
||||
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
assert layer_head_mask.size() == (self.num_heads,), (
|
||||
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
)
|
||||
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
|
@ -113,9 +113,9 @@ class FunnelConfig(PretrainedConfig):
|
||||
self.vocab_size = vocab_size
|
||||
self.block_sizes = block_sizes
|
||||
self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats
|
||||
assert len(block_sizes) == len(
|
||||
self.block_repeats
|
||||
), "`block_sizes` and `block_repeats` should have the same length."
|
||||
assert len(block_sizes) == len(self.block_repeats), (
|
||||
"`block_sizes` and `block_repeats` should have the same length."
|
||||
)
|
||||
self.num_decoder_layers = num_decoder_layers
|
||||
self.d_model = d_model
|
||||
self.n_head = n_head
|
||||
|
@ -195,7 +195,7 @@ class FuyuConfig(PretrainedConfig):
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
||||
f"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
|
@ -136,8 +136,8 @@ class GemmaTokenizerFast(PreTrainedTokenizerFast):
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
|
@ -683,7 +683,7 @@ class GitVisionEmbeddings(nn.Module):
|
||||
batch_size, _, height, width = pixel_values.shape
|
||||
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
||||
raise ValueError(
|
||||
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
|
||||
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
||||
)
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
|
@ -40,13 +40,13 @@ def rename_keys(state_dict):
|
||||
if "patch_embed" in key:
|
||||
# replace for example patch_embed1 by patch_embeddings.0
|
||||
idx = key[key.find("patch_embed") + len("patch_embed")]
|
||||
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
|
||||
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx) - 1}")
|
||||
if "norm" in key:
|
||||
key = key.replace("norm", "layer_norm")
|
||||
if "glpn.encoder.layer_norm" in key:
|
||||
# replace for example layer_norm1 by layer_norm.0
|
||||
idx = key[key.find("glpn.encoder.layer_norm") + len("glpn.encoder.layer_norm")]
|
||||
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
|
||||
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx) - 1}")
|
||||
if "layer_norm1" in key:
|
||||
key = key.replace("layer_norm1", "layer_norm_1")
|
||||
if "layer_norm2" in key:
|
||||
@ -54,7 +54,7 @@ def rename_keys(state_dict):
|
||||
if "block" in key:
|
||||
# replace for example block1 by block.0
|
||||
idx = key[key.find("block") + len("block")]
|
||||
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
|
||||
key = key.replace(f"block{idx}", f"block.{int(idx) - 1}")
|
||||
if "attn.q" in key:
|
||||
key = key.replace("attn.q", "attention.self.query")
|
||||
if "attn.proj" in key:
|
||||
@ -73,7 +73,7 @@ def rename_keys(state_dict):
|
||||
if "linear_c" in key:
|
||||
# replace for example linear_c4 by linear_c.3
|
||||
idx = key[key.find("linear_c") + len("linear_c")]
|
||||
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
|
||||
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx) - 1}")
|
||||
if "bot_conv" in key:
|
||||
key = key.replace("bot_conv", "0.convolution")
|
||||
if "skip_conv1" in key:
|
||||
|
@ -154,8 +154,8 @@ class GPTNeoXTokenizerFast(PreTrainedTokenizerFast):
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
|
@ -250,7 +250,7 @@ class SubWordJapaneseTokenizer:
|
||||
)
|
||||
keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
|
||||
blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
|
||||
self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks})
|
||||
self.content_trans1 = str.maketrans(dict.fromkeys(keisen + blocks, "<BLOCK>"))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.ids_to_tokens)
|
||||
|
@ -587,7 +587,7 @@ class TFHubertFeatureEncoder(keras.layers.Layer):
|
||||
|
||||
if config.feat_extract_norm == "group":
|
||||
conv_layers = [TFHubertGroupNormConvLayer(config, layer_id=0, name=f"conv_layers.{0}")] + [
|
||||
TFHubertNoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i+1}")
|
||||
TFHubertNoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i + 1}")
|
||||
for i in range(config.num_feat_extract_layers - 1)
|
||||
]
|
||||
elif config.feat_extract_norm == "layer":
|
||||
|
@ -171,9 +171,9 @@ class QuantAct(nn.Module):
|
||||
x_min = x_act.data.min()
|
||||
x_max = x_act.data.max()
|
||||
|
||||
assert (
|
||||
x_max.isnan().sum() == 0 and x_min.isnan().sum() == 0
|
||||
), "NaN detected when computing min/max of the activation"
|
||||
assert x_max.isnan().sum() == 0 and x_min.isnan().sum() == 0, (
|
||||
"NaN detected when computing min/max of the activation"
|
||||
)
|
||||
|
||||
# Initialization
|
||||
if self.x_min.min() > -1.1e-5 and self.x_max.max() < 1.1e-5:
|
||||
|
@ -451,7 +451,7 @@ class Kosmos2VisionEmbeddings(nn.Module):
|
||||
batch_size, _, height, width = pixel_values.shape
|
||||
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
||||
raise ValueError(
|
||||
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
|
||||
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
||||
)
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
|
@ -101,8 +101,7 @@ class LayoutXLMProcessor(ProcessorMixin):
|
||||
# verify input
|
||||
if self.image_processor.apply_ocr and (boxes is not None):
|
||||
raise ValueError(
|
||||
"You cannot provide bounding boxes "
|
||||
"if you initialized the image processor with apply_ocr set to True."
|
||||
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True."
|
||||
)
|
||||
|
||||
if self.image_processor.apply_ocr and (word_labels is not None):
|
||||
|
@ -130,12 +130,12 @@ class LEDEncoderSelfAttention(nn.Module):
|
||||
|
||||
self.layer_id = layer_id
|
||||
attention_window = config.attention_window[self.layer_id]
|
||||
assert (
|
||||
attention_window % 2 == 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
assert (
|
||||
attention_window > 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
assert attention_window % 2 == 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
)
|
||||
assert attention_window > 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
)
|
||||
|
||||
self.one_sided_attn_window_size = attention_window // 2
|
||||
|
||||
@ -169,9 +169,9 @@ class LEDEncoderSelfAttention(nn.Module):
|
||||
value_vectors = self.value(hidden_states)
|
||||
|
||||
seq_len, batch_size, embed_dim = hidden_states.size()
|
||||
assert (
|
||||
embed_dim == self.embed_dim
|
||||
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
|
||||
assert embed_dim == self.embed_dim, (
|
||||
f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
|
||||
)
|
||||
|
||||
# normalize query
|
||||
query_vectors /= math.sqrt(self.head_dim)
|
||||
@ -239,9 +239,9 @@ class LEDEncoderSelfAttention(nn.Module):
|
||||
) # use fp32 for numerical stability
|
||||
|
||||
if layer_head_mask is not None:
|
||||
assert layer_head_mask.size() == (
|
||||
self.num_heads,
|
||||
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
assert layer_head_mask.size() == (self.num_heads,), (
|
||||
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
)
|
||||
attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs
|
||||
|
||||
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
|
||||
@ -433,9 +433,9 @@ class LEDEncoderSelfAttention(nn.Module):
|
||||
overlap of size window_overlap
|
||||
"""
|
||||
batch_size, seq_len, num_heads, head_dim = query.size()
|
||||
assert (
|
||||
seq_len % (window_overlap * 2) == 0
|
||||
), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
|
||||
assert seq_len % (window_overlap * 2) == 0, (
|
||||
f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
|
||||
)
|
||||
assert query.size() == key.size()
|
||||
|
||||
chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1
|
||||
@ -706,9 +706,9 @@ class LEDEncoderSelfAttention(nn.Module):
|
||||
|
||||
# apply layer head masking
|
||||
if layer_head_mask is not None:
|
||||
assert layer_head_mask.size() == (
|
||||
self.num_heads,
|
||||
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
assert layer_head_mask.size() == (self.num_heads,), (
|
||||
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
)
|
||||
global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view(
|
||||
batch_size, self.num_heads, max_num_global_attn_indices, seq_len
|
||||
)
|
||||
|
@ -182,12 +182,12 @@ class TFLEDEncoderSelfAttention(keras.layers.Layer):
|
||||
self.layer_id = layer_id
|
||||
attention_window = config.attention_window[self.layer_id]
|
||||
|
||||
assert (
|
||||
attention_window % 2 == 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
assert (
|
||||
attention_window > 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
assert attention_window % 2 == 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
)
|
||||
assert attention_window > 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
)
|
||||
|
||||
self.one_sided_attn_window_size = attention_window // 2
|
||||
|
||||
|
@ -192,8 +192,8 @@ class LlamaTokenizerFast(PreTrainedTokenizerFast):
|
||||
if eos is None and self.add_eos_token:
|
||||
raise ValueError("add_eos_token = True but eos_token = None")
|
||||
|
||||
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
||||
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
|
||||
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
|
@ -510,12 +510,12 @@ class LongformerSelfAttention(nn.Module):
|
||||
|
||||
self.layer_id = layer_id
|
||||
attention_window = config.attention_window[self.layer_id]
|
||||
assert (
|
||||
attention_window % 2 == 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
assert (
|
||||
attention_window > 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
assert attention_window % 2 == 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
)
|
||||
assert attention_window > 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
)
|
||||
|
||||
self.one_sided_attn_window_size = attention_window // 2
|
||||
|
||||
@ -549,9 +549,9 @@ class LongformerSelfAttention(nn.Module):
|
||||
value_vectors = self.value(hidden_states)
|
||||
|
||||
seq_len, batch_size, embed_dim = hidden_states.size()
|
||||
assert (
|
||||
embed_dim == self.embed_dim
|
||||
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
|
||||
assert embed_dim == self.embed_dim, (
|
||||
f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
|
||||
)
|
||||
|
||||
# normalize query
|
||||
query_vectors /= math.sqrt(self.head_dim)
|
||||
@ -619,9 +619,9 @@ class LongformerSelfAttention(nn.Module):
|
||||
) # use fp32 for numerical stability
|
||||
|
||||
if layer_head_mask is not None:
|
||||
assert layer_head_mask.size() == (
|
||||
self.num_heads,
|
||||
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
assert layer_head_mask.size() == (self.num_heads,), (
|
||||
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
)
|
||||
attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs
|
||||
|
||||
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
|
||||
@ -813,9 +813,9 @@ class LongformerSelfAttention(nn.Module):
|
||||
overlap of size window_overlap
|
||||
"""
|
||||
batch_size, seq_len, num_heads, head_dim = query.size()
|
||||
assert (
|
||||
seq_len % (window_overlap * 2) == 0
|
||||
), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
|
||||
assert seq_len % (window_overlap * 2) == 0, (
|
||||
f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
|
||||
)
|
||||
assert query.size() == key.size()
|
||||
|
||||
chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1
|
||||
@ -1086,9 +1086,9 @@ class LongformerSelfAttention(nn.Module):
|
||||
|
||||
# apply layer head masking
|
||||
if layer_head_mask is not None:
|
||||
assert layer_head_mask.size() == (
|
||||
self.num_heads,
|
||||
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
assert layer_head_mask.size() == (self.num_heads,), (
|
||||
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
||||
)
|
||||
global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view(
|
||||
batch_size, self.num_heads, max_num_global_attn_indices, seq_len
|
||||
)
|
||||
@ -1287,9 +1287,9 @@ class LongformerEncoder(nn.Module):
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
if head_mask is not None:
|
||||
assert head_mask.size()[0] == (
|
||||
len(self.layer)
|
||||
), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}."
|
||||
assert head_mask.size()[0] == (len(self.layer)), (
|
||||
f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}."
|
||||
)
|
||||
for idx, layer_module in enumerate(self.layer):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
@ -1590,8 +1590,7 @@ class LongformerModel(LongformerPreTrainedModel):
|
||||
# this path should be recorded in the ONNX export, it is fine with padding_len == 0 as well
|
||||
if padding_len > 0:
|
||||
logger.warning_once(
|
||||
f"Input ids are automatically padded to be a multiple of "
|
||||
f"`config.attention_window`: {attention_window}"
|
||||
f"Input ids are automatically padded to be a multiple of `config.attention_window`: {attention_window}"
|
||||
)
|
||||
if input_ids is not None:
|
||||
input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id)
|
||||
|
@ -746,12 +746,12 @@ class TFLongformerSelfAttention(keras.layers.Layer):
|
||||
self.layer_id = layer_id
|
||||
attention_window = config.attention_window[self.layer_id]
|
||||
|
||||
assert (
|
||||
attention_window % 2 == 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
assert (
|
||||
attention_window > 0
|
||||
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
assert attention_window % 2 == 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
|
||||
)
|
||||
assert attention_window > 0, (
|
||||
f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
|
||||
)
|
||||
|
||||
self.one_sided_attn_window_size = attention_window // 2
|
||||
|
||||
|
@ -1294,7 +1294,7 @@ class M2M100Decoder(M2M100PreTrainedModel):
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
|
@ -228,7 +228,7 @@ class TatoebaConverter:
|
||||
# combine with Tatoeba markdown
|
||||
readme_url = f"{TATOEBA_MODELS_URL}/{model_dict['_name']}/README.md"
|
||||
extra_markdown = f"""
|
||||
### {model_dict['_name']}
|
||||
### {model_dict["_name"]}
|
||||
|
||||
* source language name: {self.tag2name[a3_src]}
|
||||
* target language name: {self.tag2name[a3_tgt]}
|
||||
@ -237,12 +237,12 @@ class TatoebaConverter:
|
||||
|
||||
content = (
|
||||
f"""
|
||||
* model: {model_dict['modeltype']}
|
||||
* source language code{src_multilingual*'s'}: {', '.join(a2_src_tags)}
|
||||
* target language code{tgt_multilingual*'s'}: {', '.join(a2_tgt_tags)}
|
||||
* model: {model_dict["modeltype"]}
|
||||
* source language code{src_multilingual * "s"}: {", ".join(a2_src_tags)}
|
||||
* target language code{tgt_multilingual * "s"}: {", ".join(a2_tgt_tags)}
|
||||
* dataset: opus {backtranslated_data}
|
||||
* release date: {model_dict['release-date']}
|
||||
* pre-processing: {model_dict['pre-processing']}
|
||||
* release date: {model_dict["release-date"]}
|
||||
* pre-processing: {model_dict["pre-processing"]}
|
||||
"""
|
||||
+ multilingual_data
|
||||
+ tuned
|
||||
|
@ -741,9 +741,9 @@ class MarianEncoder(MarianPreTrainedModel):
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
if head_mask is not None:
|
||||
assert head_mask.size()[0] == (
|
||||
len(self.layers)
|
||||
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
assert head_mask.size()[0] == (len(self.layers)), (
|
||||
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
)
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
|
@ -339,7 +339,7 @@ class MarianTokenizer(PreTrainedTokenizer):
|
||||
def __getstate__(self) -> Dict:
|
||||
state = self.__dict__.copy()
|
||||
state.update(
|
||||
{k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]}
|
||||
dict.fromkeys(["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"])
|
||||
)
|
||||
return state
|
||||
|
||||
|
@ -523,11 +523,11 @@ class OriginalMask2FormerCheckpointToOursConverter:
|
||||
[
|
||||
(
|
||||
f"{src_prefix}.norm{layer_idx}.weight",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx + 1}.weight",
|
||||
),
|
||||
(
|
||||
f"{src_prefix}.norm{layer_idx}.bias",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx + 1}.bias",
|
||||
),
|
||||
]
|
||||
)
|
||||
@ -863,9 +863,9 @@ def test(
|
||||
for original_model_feature, our_model_feature in zip(
|
||||
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
|
||||
):
|
||||
assert torch.allclose(
|
||||
original_model_feature, our_model_feature, atol=tolerance
|
||||
), "The backbone features are not the same."
|
||||
assert torch.allclose(original_model_feature, our_model_feature, atol=tolerance), (
|
||||
"The backbone features are not the same."
|
||||
)
|
||||
|
||||
# Test pixel decoder
|
||||
mask_features, _, multi_scale_features = original_model.sem_seg_head.pixel_decoder.forward_features(
|
||||
@ -875,9 +875,9 @@ def test(
|
||||
for original_model_feature, our_model_feature in zip(
|
||||
multi_scale_features, our_model_output.pixel_decoder_hidden_states
|
||||
):
|
||||
assert torch.allclose(
|
||||
original_model_feature, our_model_feature, atol=tolerance
|
||||
), "The pixel decoder feature are not the same"
|
||||
assert torch.allclose(original_model_feature, our_model_feature, atol=tolerance), (
|
||||
"The pixel decoder feature are not the same"
|
||||
)
|
||||
|
||||
# Let's test the full model
|
||||
tr_complete = T.Compose(
|
||||
@ -894,12 +894,12 @@ def test(
|
||||
|
||||
assert original_mask_logits.shape == our_mask_logits.shape, "Output masks shapes are not matching."
|
||||
assert original_class_logits.shape == our_class_logits.shape, "Output class logits shapes are not matching."
|
||||
assert torch.allclose(
|
||||
original_class_logits, our_class_logits, atol=tolerance
|
||||
), "The class logits are not the same."
|
||||
assert torch.allclose(
|
||||
original_mask_logits, our_mask_logits, atol=tolerance
|
||||
), "The predicted masks are not the same."
|
||||
assert torch.allclose(original_class_logits, our_class_logits, atol=tolerance), (
|
||||
"The class logits are not the same."
|
||||
)
|
||||
assert torch.allclose(original_mask_logits, our_mask_logits, atol=tolerance), (
|
||||
"The predicted masks are not the same."
|
||||
)
|
||||
|
||||
logger.info("✅ Test passed!")
|
||||
|
||||
|
@ -581,9 +581,9 @@ def test(original_model, our_model: MaskFormerForInstanceSegmentation, image_pro
|
||||
for original_model_feature, our_model_feature in zip(
|
||||
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
|
||||
):
|
||||
assert torch.allclose(
|
||||
original_model_feature, our_model_feature, atol=1e-3
|
||||
), "The backbone features are not the same."
|
||||
assert torch.allclose(original_model_feature, our_model_feature, atol=1e-3), (
|
||||
"The backbone features are not the same."
|
||||
)
|
||||
|
||||
original_model_pixel_out = original_model.sem_seg_head.pixel_decoder.forward_features(
|
||||
original_model_backbone_features
|
||||
@ -602,9 +602,9 @@ def test(original_model, our_model: MaskFormerForInstanceSegmentation, image_pro
|
||||
|
||||
our_segmentation = image_processor.post_process_segmentation(our_model_out, target_size=(384, 384))
|
||||
|
||||
assert torch.allclose(
|
||||
original_segmentation, our_segmentation, atol=1e-3
|
||||
), "The segmentation image is not the same."
|
||||
assert torch.allclose(original_segmentation, our_segmentation, atol=1e-3), (
|
||||
"The segmentation image is not the same."
|
||||
)
|
||||
|
||||
logger.info("✅ Test passed!")
|
||||
|
||||
|
@ -125,31 +125,31 @@ def create_rename_keys(config):
|
||||
for i in range(3):
|
||||
rename_keys.append(
|
||||
(
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.weight",
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i + 1}.weight",
|
||||
f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight",
|
||||
)
|
||||
)
|
||||
rename_keys.append(
|
||||
(
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.weight",
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i + 1}.norm.weight",
|
||||
f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight",
|
||||
)
|
||||
)
|
||||
rename_keys.append(
|
||||
(
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.bias",
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i + 1}.norm.bias",
|
||||
f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias",
|
||||
)
|
||||
)
|
||||
rename_keys.append(
|
||||
(
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_mean",
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i + 1}.norm.running_mean",
|
||||
f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean",
|
||||
)
|
||||
)
|
||||
rename_keys.append(
|
||||
(
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_var",
|
||||
f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i + 1}.norm.running_var",
|
||||
f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var",
|
||||
)
|
||||
)
|
||||
|
@ -129,7 +129,7 @@ def _convert_model(
|
||||
hf_model.load_state_dict(state_dict, strict=True)
|
||||
n_params = param_count(hf_model)
|
||||
|
||||
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
|
||||
logger.info(f"model loaded: {round(n_params / 1e6, 1)}M params")
|
||||
|
||||
hf_model.eval()
|
||||
hf_model.to(device)
|
||||
|
@ -144,9 +144,9 @@ def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path):
|
||||
elif m_name == "kernel":
|
||||
array = np.transpose(array)
|
||||
try:
|
||||
assert (
|
||||
pointer.shape == array.shape
|
||||
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
assert pointer.shape == array.shape, (
|
||||
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
)
|
||||
except AssertionError as e:
|
||||
e.args += (pointer.shape, array.shape)
|
||||
raise
|
||||
|
@ -99,9 +99,9 @@ def get_mobilevitv2_config(task_name, orig_cfg_file):
|
||||
orig_config = load_orig_config_file(orig_cfg_file)
|
||||
assert getattr(orig_config, "model.classification.name", -1) == "mobilevit_v2", "Invalid model"
|
||||
config.width_multiplier = getattr(orig_config, "model.classification.mitv2.width_multiplier", 1.0)
|
||||
assert (
|
||||
getattr(orig_config, "model.classification.mitv2.attn_norm_layer", -1) == "layer_norm_2d"
|
||||
), "Norm layers other than layer_norm_2d is not supported"
|
||||
assert getattr(orig_config, "model.classification.mitv2.attn_norm_layer", -1) == "layer_norm_2d", (
|
||||
"Norm layers other than layer_norm_2d is not supported"
|
||||
)
|
||||
config.hidden_act = getattr(orig_config, "model.classification.activation.name", "swish")
|
||||
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
|
||||
|
||||
@ -151,7 +151,7 @@ def create_rename_keys(state_dict, base_model=False):
|
||||
k_new = k_new.replace("conv_1.", f"{model_prefix}conv_stem.")
|
||||
for i in [1, 2]:
|
||||
if f"layer_{i}." in k:
|
||||
k_new = k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i-1}.layer.")
|
||||
k_new = k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i - 1}.layer.")
|
||||
if ".exp_1x1." in k:
|
||||
k_new = k_new.replace(".exp_1x1.", ".expand_1x1.")
|
||||
if ".red_1x1." in k:
|
||||
@ -159,11 +159,11 @@ def create_rename_keys(state_dict, base_model=False):
|
||||
|
||||
for i in [3, 4, 5]:
|
||||
if f"layer_{i}.0." in k:
|
||||
k_new = k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i-1}.downsampling_layer.")
|
||||
k_new = k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i - 1}.downsampling_layer.")
|
||||
if f"layer_{i}.1.local_rep.0." in k:
|
||||
k_new = k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i-1}.conv_kxk.")
|
||||
k_new = k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i - 1}.conv_kxk.")
|
||||
if f"layer_{i}.1.local_rep.1." in k:
|
||||
k_new = k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i-1}.conv_1x1.")
|
||||
k_new = k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i - 1}.conv_1x1.")
|
||||
|
||||
for i in [3, 4, 5]:
|
||||
if i == 3:
|
||||
@ -176,15 +176,17 @@ def create_rename_keys(state_dict, base_model=False):
|
||||
for j in j_in:
|
||||
if f"layer_{i}.1.global_rep.{j}." in k:
|
||||
k_new = k_new.replace(
|
||||
f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}."
|
||||
f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i - 1}.transformer.layer.{j}."
|
||||
)
|
||||
if f"layer_{i}.1.global_rep.{j+1}." in k:
|
||||
if f"layer_{i}.1.global_rep.{j + 1}." in k:
|
||||
k_new = k_new.replace(
|
||||
f"layer_{i}.1.global_rep.{j+1}.", f"{model_prefix}encoder.layer.{i-1}.layernorm."
|
||||
f"layer_{i}.1.global_rep.{j + 1}.", f"{model_prefix}encoder.layer.{i - 1}.layernorm."
|
||||
)
|
||||
|
||||
if f"layer_{i}.1.conv_proj." in k:
|
||||
k_new = k_new.replace(f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i-1}.conv_projection.")
|
||||
k_new = k_new.replace(
|
||||
f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i - 1}.conv_projection."
|
||||
)
|
||||
|
||||
if "pre_norm_attn.0." in k:
|
||||
k_new = k_new.replace("pre_norm_attn.0.", "layernorm_before.")
|
||||
|
@ -56,7 +56,7 @@ def _read_h5_weights(group, current_key="", weights={}):
|
||||
def _convert_layer_names(name, gated_mlp=False):
|
||||
name = re.sub(
|
||||
r"layers\.functional(?:_(\d+))?\.layers",
|
||||
lambda m: f'layers.{m.group(1) if m.group(1) else "0"}',
|
||||
lambda m: f"layers.{m.group(1) if m.group(1) else '0'}",
|
||||
name,
|
||||
count=1,
|
||||
)
|
||||
|
@ -186,7 +186,7 @@ def _convert_model(
|
||||
hf_model.load_state_dict(state_dict, strict=True)
|
||||
n_params = param_count(hf_model)
|
||||
|
||||
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
|
||||
logger.info(f"model loaded: {round(n_params / 1e6, 1)}M params")
|
||||
|
||||
hf_model.eval()
|
||||
hf_model.to(device)
|
||||
|
@ -719,9 +719,9 @@ def load_tf_weights_in_mt5(model, config, tf_checkpoint_path):
|
||||
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
|
||||
array = np.transpose(array)
|
||||
try:
|
||||
assert (
|
||||
pointer.shape == array.shape
|
||||
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
assert pointer.shape == array.shape, (
|
||||
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||||
)
|
||||
except AssertionError as e:
|
||||
e.args += (pointer.shape, array.shape)
|
||||
raise
|
||||
|
@ -65,13 +65,13 @@ def get_args():
|
||||
"--hf_input_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="A HF model path, " "e.g. a folder containing https://huggingface.co/nvidia/Minitron-8B-Base",
|
||||
help="A HF model path, e.g. a folder containing https://huggingface.co/nvidia/Minitron-8B-Base",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf_output_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Output HF model path, " "with the same format as above but user's own weights",
|
||||
help="Output HF model path, with the same format as above but user's own weights",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
|
@ -82,7 +82,7 @@ def shard_on_the_fly(switch_checkpoint_path, dump_path, num_experts, dtype, weig
|
||||
remove_ignore_keys_(expert_state)
|
||||
expert_state = rename_fairseq_keys(expert_state, expert)
|
||||
save_path = os.path.join(
|
||||
dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin")
|
||||
dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts) + 1:05d}-of-???.bin")
|
||||
)
|
||||
torch.save(expert_state, save_path)
|
||||
sharded_state_dicts.append(expert_state.keys())
|
||||
@ -91,7 +91,9 @@ def shard_on_the_fly(switch_checkpoint_path, dump_path, num_experts, dtype, weig
|
||||
)
|
||||
|
||||
# Add the last block
|
||||
save_path = os.path.join(dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin"))
|
||||
save_path = os.path.join(
|
||||
dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts) + 1:05d}-of-???.bin")
|
||||
)
|
||||
shared_weights = torch.load(switch_checkpoint_path + "-shared.pt")["model"]
|
||||
remove_ignore_keys_(shared_weights)
|
||||
shared_weights = rename_fairseq_keys(shared_weights, None)
|
||||
@ -108,8 +110,8 @@ def shard_on_the_fly(switch_checkpoint_path, dump_path, num_experts, dtype, weig
|
||||
# Otherwise, let's build the index
|
||||
weight_map = {}
|
||||
for idx, shard in enumerate(sharded_state_dicts):
|
||||
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
|
||||
temp_filename = os.path.join(dump_path, weights_name.replace(".bin", f"-{idx+1:05d}-of-???.bin"))
|
||||
shard_file = weights_name.replace(".bin", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.bin")
|
||||
temp_filename = os.path.join(dump_path, weights_name.replace(".bin", f"-{idx + 1:05d}-of-???.bin"))
|
||||
os.rename(temp_filename, os.path.join(dump_path, shard_file))
|
||||
for key in shard:
|
||||
weight_map[key] = shard_file
|
||||
|
@ -1352,7 +1352,7 @@ class NllbMoeDecoder(NllbMoePreTrainedModel):
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
|
@ -5,7 +5,6 @@
|
||||
# modular_olmo2.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
from typing import Callable, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn as nn
|
||||
|
||||
from ...cache_utils import Cache
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
||||
|
@ -394,11 +394,11 @@ class OriginalOneFormerCheckpointToOursConverter:
|
||||
[
|
||||
(
|
||||
f"{src_prefix}.norm{layer_idx}.weight",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx + 1}.weight",
|
||||
),
|
||||
(
|
||||
f"{src_prefix}.norm{layer_idx}.bias",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx + 1}.bias",
|
||||
),
|
||||
]
|
||||
)
|
||||
@ -531,11 +531,11 @@ class OriginalOneFormerCheckpointToOursConverter:
|
||||
[
|
||||
(
|
||||
f"{src_prefix}.norm{layer_idx}.weight",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx + 1}.weight",
|
||||
),
|
||||
(
|
||||
f"{src_prefix}.norm{layer_idx}.bias",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
|
||||
f"{dst_prefix}.hidden_states_norms.stage{layer_idx + 1}.bias",
|
||||
),
|
||||
]
|
||||
)
|
||||
@ -1010,9 +1010,9 @@ def test(
|
||||
for original_model_feature, our_model_feature in zip(
|
||||
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
|
||||
):
|
||||
assert torch.allclose(
|
||||
original_model_feature, our_model_feature, atol=3e-3
|
||||
), "The backbone features are not the same."
|
||||
assert torch.allclose(original_model_feature, our_model_feature, atol=3e-3), (
|
||||
"The backbone features are not the same."
|
||||
)
|
||||
mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features(
|
||||
original_model_backbone_features
|
||||
)
|
||||
@ -1025,9 +1025,9 @@ def test(
|
||||
for original_model_feature, our_model_feature in zip(
|
||||
original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states
|
||||
):
|
||||
assert torch.allclose(
|
||||
original_model_feature, our_model_feature, atol=3e-4
|
||||
), "The pixel decoder feature are not the same"
|
||||
assert torch.allclose(original_model_feature, our_model_feature, atol=3e-4), (
|
||||
"The pixel decoder feature are not the same"
|
||||
)
|
||||
|
||||
tr_complete = T.Compose(
|
||||
[
|
||||
@ -1049,9 +1049,9 @@ def test(
|
||||
|
||||
our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0]
|
||||
|
||||
assert torch.allclose(
|
||||
original_segmentation, our_segmentation, atol=1e-3
|
||||
), "The segmentation image is not the same."
|
||||
assert torch.allclose(original_segmentation, our_segmentation, atol=1e-3), (
|
||||
"The segmentation image is not the same."
|
||||
)
|
||||
|
||||
logger.info("✅ Test passed!")
|
||||
|
||||
|
@ -62,9 +62,9 @@ class TFAttention(keras.layers.Layer):
|
||||
|
||||
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
||||
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
|
||||
assert (
|
||||
n_state % config.n_head == 0
|
||||
), f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}"
|
||||
assert n_state % config.n_head == 0, (
|
||||
f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}"
|
||||
)
|
||||
self.n_head = config.n_head
|
||||
self.split_size = n_state
|
||||
self.scale = scale
|
||||
|
@ -173,7 +173,7 @@ def _preprocess_resize_output_shape(image, output_shape):
|
||||
# multichannel case: append shape of last axis
|
||||
output_shape = output_shape + (image.shape[-1],)
|
||||
elif output_ndim < image.ndim:
|
||||
raise ValueError("output_shape length cannot be smaller than the " "image number of dimensions")
|
||||
raise ValueError("output_shape length cannot be smaller than the image number of dimensions")
|
||||
|
||||
return image, output_shape
|
||||
|
||||
@ -345,10 +345,10 @@ class Owlv2ImageProcessor(BaseImageProcessor):
|
||||
else:
|
||||
anti_aliasing_sigma = np.atleast_1d(anti_aliasing_sigma) * np.ones_like(factors)
|
||||
if np.any(anti_aliasing_sigma < 0):
|
||||
raise ValueError("Anti-aliasing standard deviation must be " "greater than or equal to zero")
|
||||
raise ValueError("Anti-aliasing standard deviation must be greater than or equal to zero")
|
||||
elif np.any((anti_aliasing_sigma > 0) & (factors <= 1)):
|
||||
warnings.warn(
|
||||
"Anti-aliasing standard deviation greater than zero but " "not down-sampling along all axes"
|
||||
"Anti-aliasing standard deviation greater than zero but not down-sampling along all axes"
|
||||
)
|
||||
filtered = ndi.gaussian_filter(image, anti_aliasing_sigma, cval=cval, mode=ndi_mode)
|
||||
else:
|
||||
|
@ -112,17 +112,17 @@ ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
|
||||
r"pretrained.blocks.(\d+).attn.qkv.(weight|bias)": r"qkv_transform_\2_\1",
|
||||
# Neck
|
||||
r"depth_head.projects.(\d+).(weight|bias)": r"neck.reassemble_stage.layers.\1.projection.\2",
|
||||
r"depth_head.scratch.layer(\d+)_rn.weight": lambda m: f"neck.convs.{int(m.group(1))-1}.weight",
|
||||
r"depth_head.scratch.layer(\d+)_rn.weight": lambda m: f"neck.convs.{int(m.group(1)) - 1}.weight",
|
||||
r"depth_head.resize_layers.(\d+).(weight|bias)": r"neck.reassemble_stage.layers.\1.resize.\2",
|
||||
# Refinenet (with reversed indices)
|
||||
r"depth_head.scratch.refinenet(\d+).out_conv.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.projection.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit1.conv1.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.residual_layer1.convolution1.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit1.conv2.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.residual_layer1.convolution2.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit2.conv1.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.residual_layer2.convolution1.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit2.conv2.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.residual_layer2.convolution2.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit_depth.0.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.prompt_depth_layer.convolution1.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit_depth.2.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.prompt_depth_layer.convolution2.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit_depth.4.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4-int(m.group(1))}.prompt_depth_layer.convolution3.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).out_conv.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.projection.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit1.conv1.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.residual_layer1.convolution1.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit1.conv2.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.residual_layer1.convolution2.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit2.conv1.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.residual_layer2.convolution1.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit2.conv2.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.residual_layer2.convolution2.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit_depth.0.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.prompt_depth_layer.convolution1.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit_depth.2.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.prompt_depth_layer.convolution2.{m.group(2)}",
|
||||
r"depth_head.scratch.refinenet(\d+).resConfUnit_depth.4.(weight|bias)": lambda m: f"neck.fusion_stage.layers.{4 - int(m.group(1))}.prompt_depth_layer.convolution3.{m.group(2)}",
|
||||
# Head
|
||||
r"depth_head.scratch.output_conv1.(weight|bias)": r"head.conv1.\1",
|
||||
r"depth_head.scratch.output_conv2.0.(weight|bias)": r"head.conv2.\1",
|
||||
|
@ -118,9 +118,9 @@ def convert_prophetnet_checkpoint_to_pytorch(prophetnet_checkpoint_path: str, py
|
||||
is_key_init = True
|
||||
break
|
||||
elif attribute == "position_embeddings":
|
||||
assert (
|
||||
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
|
||||
), "Hidden size has to match"
|
||||
assert model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1], (
|
||||
"Hidden size has to match"
|
||||
)
|
||||
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
|
||||
model.position_embeddings.weight = nn.Parameter(old_model.embed_positions.weight[:512, :])
|
||||
is_key_init = True
|
||||
|
@ -588,9 +588,9 @@ class ProphetNetPositionalEmbeddings(nn.Embedding):
|
||||
super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id)
|
||||
|
||||
def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None):
|
||||
assert (position_ids is None) or (
|
||||
self.padding_idx is None
|
||||
), "If position_ids is pre-computed then padding_idx should not be set."
|
||||
assert (position_ids is None) or (self.padding_idx is None), (
|
||||
"If position_ids is pre-computed then padding_idx should not be set."
|
||||
)
|
||||
|
||||
if position_ids is None:
|
||||
if past_key_values is not None:
|
||||
@ -784,9 +784,9 @@ class ProphetNetNgramSelfAttention(nn.Module):
|
||||
self.head_dim = config.hidden_size // self.num_attn_heads
|
||||
self.ngram = config.ngram
|
||||
|
||||
assert (
|
||||
self.head_dim * self.num_attn_heads == config.hidden_size
|
||||
), "config.hidden_size must be divisible by num_attn_heads"
|
||||
assert self.head_dim * self.num_attn_heads == config.hidden_size, (
|
||||
"config.hidden_size must be divisible by num_attn_heads"
|
||||
)
|
||||
# key, value, query projection
|
||||
self.key_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.value_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
@ -1041,9 +1041,9 @@ class ProphetNetNgramSelfAttention(nn.Module):
|
||||
|
||||
if predict_relative_position_buckets is None:
|
||||
key_sequence_length = attn_weights.shape[-1]
|
||||
assert (
|
||||
position_ids[0][0] == key_sequence_length - 1
|
||||
), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)"
|
||||
assert position_ids[0][0] == key_sequence_length - 1, (
|
||||
"`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)"
|
||||
)
|
||||
relative_positions = (
|
||||
torch.arange(0, key_sequence_length)
|
||||
.unsqueeze(0)
|
||||
@ -1313,9 +1313,9 @@ class ProphetNetEncoder(ProphetNetPreTrainedModel):
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
if head_mask is not None:
|
||||
assert head_mask.size()[0] == (
|
||||
len(self.layers)
|
||||
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
assert head_mask.size()[0] == (len(self.layers)), (
|
||||
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
)
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_hidden_states = encoder_hidden_states + (hidden_states,)
|
||||
@ -1488,9 +1488,9 @@ class ProphetNetDecoder(ProphetNetPreTrainedModel):
|
||||
|
||||
# prepare attention mask
|
||||
if past_key_values is not None:
|
||||
assert (
|
||||
hidden_states.size(1) == 1
|
||||
), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1"
|
||||
assert hidden_states.size(1) == 1, (
|
||||
"At the moment `use_cache` is only supported for `decoder_input_ids` of length 1"
|
||||
)
|
||||
|
||||
ngram_hidden_states = [
|
||||
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1)
|
||||
|
@ -162,7 +162,7 @@ def convert_pvt_checkpoint(pvt_size, pvt_checkpoint, pytorch_dump_folder_path):
|
||||
elif pvt_size == "large":
|
||||
config_path = "Zetatech/pvt-large-224"
|
||||
else:
|
||||
raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given")
|
||||
raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but '{pvt_size}' was given")
|
||||
config = PvtConfig(name_or_path=config_path)
|
||||
# load original model from https://github.com/whai362/PVT
|
||||
state_dict = torch.load(pvt_checkpoint, map_location="cpu")
|
||||
@ -192,7 +192,7 @@ def convert_pvt_checkpoint(pvt_size, pvt_checkpoint, pytorch_dump_folder_path):
|
||||
elif pvt_size == "large":
|
||||
expected_slice_logits = torch.tensor([0.3740, -0.7739, -0.4214])
|
||||
else:
|
||||
raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given")
|
||||
raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but '{pvt_size}' was given")
|
||||
|
||||
assert torch.allclose(logits[0, :3], expected_slice_logits, atol=1e-4)
|
||||
|
||||
|
@ -203,8 +203,7 @@ def convert_pvt_v2_checkpoint(pvt_v2_size, pvt_v2_checkpoint, pytorch_dump_folde
|
||||
config_path = "OpenGVLab/pvt_v2_b5"
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Available model sizes: 'b0', 'b1', 'b2', 'b2-linear', 'b3', 'b4', 'b5', but "
|
||||
f"'{pvt_v2_size}' was given"
|
||||
f"Available model sizes: 'b0', 'b1', 'b2', 'b2-linear', 'b3', 'b4', 'b5', but '{pvt_v2_size}' was given"
|
||||
)
|
||||
config = PvtV2Config.from_pretrained(config_path)
|
||||
# load original model from https://github.com/whai362/PVT
|
||||
@ -248,9 +247,9 @@ def convert_pvt_v2_checkpoint(pvt_v2_size, pvt_v2_checkpoint, pytorch_dump_folde
|
||||
f"'{pvt_v2_size}' was given"
|
||||
)
|
||||
|
||||
assert torch.allclose(
|
||||
logits[0, :3], expected_slice_logits, atol=1e-4
|
||||
), "ImageNet weights not converted successfully."
|
||||
assert torch.allclose(logits[0, :3], expected_slice_logits, atol=1e-4), (
|
||||
"ImageNet weights not converted successfully."
|
||||
)
|
||||
|
||||
print("ImageNet weights verified, conversion successful.")
|
||||
|
||||
|
@ -623,9 +623,9 @@ class Qwen2AudioEncoder(Qwen2AudioPreTrainedModel):
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
if head_mask is not None:
|
||||
assert head_mask.size()[0] == (
|
||||
len(self.layers)
|
||||
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
assert head_mask.size()[0] == (len(self.layers)), (
|
||||
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||||
)
|
||||
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
|
@ -494,9 +494,9 @@ class RagModel(RagPreTrainedModel):
|
||||
retriever: Optional[RagRetriever] = None, # or maybe just use a `set_retriever(...)` method
|
||||
**kwargs,
|
||||
):
|
||||
assert config is not None or (
|
||||
question_encoder is not None and generator is not None
|
||||
), "Either a configuration or an question_encoder and a generator has to be provided."
|
||||
assert config is not None or (question_encoder is not None and generator is not None), (
|
||||
"Either a configuration or an question_encoder and a generator has to be provided."
|
||||
)
|
||||
|
||||
if config is None:
|
||||
config = RagConfig.from_question_encoder_generator_configs(
|
||||
@ -517,9 +517,9 @@ class RagModel(RagPreTrainedModel):
|
||||
|
||||
self.retriever = retriever
|
||||
if self.retriever is not None:
|
||||
assert isinstance(
|
||||
retriever, RagRetriever
|
||||
), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
|
||||
assert isinstance(retriever, RagRetriever), (
|
||||
f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
|
||||
)
|
||||
self.retriever = retriever
|
||||
|
||||
self.question_encoder = question_encoder
|
||||
@ -660,9 +660,9 @@ class RagModel(RagPreTrainedModel):
|
||||
" retriever using the `set_retriever(...)` function."
|
||||
)
|
||||
|
||||
assert (
|
||||
doc_scores is not None
|
||||
), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
|
||||
assert doc_scores is not None, (
|
||||
"Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
|
||||
)
|
||||
|
||||
assert (doc_scores.shape[1] % n_docs) == 0, (
|
||||
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
|
||||
@ -740,9 +740,9 @@ class RagSequenceForGeneration(RagPreTrainedModel):
|
||||
retriever: Optional[RagRetriever] = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert config is not None or (
|
||||
question_encoder is not None and generator is not None
|
||||
), "Either a configuration or an encoder and a generator has to be provided."
|
||||
assert config is not None or (question_encoder is not None and generator is not None), (
|
||||
"Either a configuration or an encoder and a generator has to be provided."
|
||||
)
|
||||
|
||||
if config is None:
|
||||
config = RagConfig.from_question_encoder_generator_configs(
|
||||
@ -973,9 +973,9 @@ class RagSequenceForGeneration(RagPreTrainedModel):
|
||||
)
|
||||
num_beams = num_beams if num_beams is not None else self.config.num_beams
|
||||
|
||||
assert (
|
||||
input_ids is not None or context_input_ids is not None
|
||||
), " At least one of input_ids or context_input_ids must be given"
|
||||
assert input_ids is not None or context_input_ids is not None, (
|
||||
" At least one of input_ids or context_input_ids must be given"
|
||||
)
|
||||
|
||||
if self.retriever is not None and context_input_ids is None:
|
||||
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
||||
@ -1138,9 +1138,9 @@ class RagTokenForGeneration(RagPreTrainedModel):
|
||||
retriever: Optional[RagRetriever] = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert config is not None or (
|
||||
question_encoder is not None and generator is not None
|
||||
), "Either a configuration or an encoder and a generator has to be provided."
|
||||
assert config is not None or (question_encoder is not None and generator is not None), (
|
||||
"Either a configuration or an encoder and a generator has to be provided."
|
||||
)
|
||||
|
||||
if config is None:
|
||||
config = RagConfig.from_question_encoder_generator_configs(
|
||||
|
@ -506,9 +506,9 @@ class TFRagModel(TFRagPreTrainedModel):
|
||||
load_weight_prefix: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert config is not None or (
|
||||
question_encoder is not None and generator is not None
|
||||
), "Either a configuration or an question_encoder and a generator has to be provided."
|
||||
assert config is not None or (question_encoder is not None and generator is not None), (
|
||||
"Either a configuration or an question_encoder and a generator has to be provided."
|
||||
)
|
||||
|
||||
if config is None:
|
||||
config = RagConfig.from_question_encoder_generator_configs(
|
||||
@ -533,9 +533,9 @@ class TFRagModel(TFRagPreTrainedModel):
|
||||
|
||||
self.retriever = retriever
|
||||
if self.retriever is not None:
|
||||
assert isinstance(
|
||||
retriever, RagRetriever
|
||||
), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
|
||||
assert isinstance(retriever, RagRetriever), (
|
||||
f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
|
||||
)
|
||||
self.retriever = retriever
|
||||
|
||||
self.question_encoder = question_encoder
|
||||
@ -589,9 +589,9 @@ class TFRagModel(TFRagPreTrainedModel):
|
||||
>>> input_ids = input_dict["input_ids"]
|
||||
>>> outputs = model(input_ids)
|
||||
```"""
|
||||
assert (
|
||||
"decoder_cached_states" not in kwargs
|
||||
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
|
||||
assert "decoder_cached_states" not in kwargs, (
|
||||
"Please use past_key_values to cache intermediate outputs"
|
||||
) # from modeling_tf_bart.py
|
||||
|
||||
# aliasing to minimize code changing
|
||||
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
||||
@ -657,9 +657,9 @@ class TFRagModel(TFRagPreTrainedModel):
|
||||
" retriever using the `set_retriever(...)` function."
|
||||
)
|
||||
|
||||
assert (
|
||||
doc_scores is not None
|
||||
), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
|
||||
assert doc_scores is not None, (
|
||||
"Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
|
||||
)
|
||||
|
||||
assert (doc_scores.shape[1] % n_docs) == 0, (
|
||||
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
|
||||
@ -747,9 +747,9 @@ class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss
|
||||
retriever: Optional[RagRetriever] = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert config is not None or (
|
||||
question_encoder is not None and generator is not None
|
||||
), "Either a configuration or an encoder and a generator has to be provided."
|
||||
assert config is not None or (question_encoder is not None and generator is not None), (
|
||||
"Either a configuration or an encoder and a generator has to be provided."
|
||||
)
|
||||
|
||||
if config is None:
|
||||
config = RagConfig.from_question_encoder_generator_configs(
|
||||
@ -939,9 +939,9 @@ class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss
|
||||
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
|
||||
```"""
|
||||
|
||||
assert (
|
||||
"decoder_cached_states" not in kwargs
|
||||
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
|
||||
assert "decoder_cached_states" not in kwargs, (
|
||||
"Please use past_key_values to cache intermediate outputs"
|
||||
) # from modeling_tf_bart.py
|
||||
|
||||
do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize
|
||||
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
|
||||
@ -1327,9 +1327,9 @@ class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingL
|
||||
retriever: Optional[RagRetriever] = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert config is not None or (
|
||||
question_encoder is not None and generator is not None
|
||||
), "Either a configuration or an encoder and a generator has to be provided."
|
||||
assert config is not None or (question_encoder is not None and generator is not None), (
|
||||
"Either a configuration or an encoder and a generator has to be provided."
|
||||
)
|
||||
|
||||
if config is None:
|
||||
config = RagConfig.from_question_encoder_generator_configs(
|
||||
@ -1454,9 +1454,9 @@ class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingL
|
||||
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
|
||||
```"""
|
||||
|
||||
assert (
|
||||
"decoder_cached_states" not in kwargs
|
||||
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
|
||||
assert "decoder_cached_states" not in kwargs, (
|
||||
"Please use past_key_values to cache intermediate outputs"
|
||||
) # from modeling_tf_bart.py
|
||||
|
||||
exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score
|
||||
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
|
||||
@ -1663,9 +1663,9 @@ class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingL
|
||||
)
|
||||
num_beams = num_beams if num_beams is not None else self.config.num_beams
|
||||
|
||||
assert (
|
||||
input_ids is not None or context_input_ids is not None
|
||||
), " At least one of input_ids or context_input_ids must be given"
|
||||
assert input_ids is not None or context_input_ids is not None, (
|
||||
" At least one of input_ids or context_input_ids must be given"
|
||||
)
|
||||
|
||||
if self.retriever is not None and context_input_ids is None:
|
||||
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
||||
|
@ -156,9 +156,9 @@ class LegacyIndex(Index):
|
||||
)
|
||||
with open(resolved_meta_path, "rb") as metadata_file:
|
||||
self.index_id_to_db_id = pickle.load(metadata_file)
|
||||
assert (
|
||||
len(self.index_id_to_db_id) == self.index.ntotal
|
||||
), "Deserialized index_id_to_db_id should match faiss index size"
|
||||
assert len(self.index_id_to_db_id) == self.index.ntotal, (
|
||||
"Deserialized index_id_to_db_id should match faiss index size"
|
||||
)
|
||||
|
||||
def is_initialized(self):
|
||||
return self._index_initialized
|
||||
|
@ -150,15 +150,15 @@ def set_model_weights_in_torch(weights, torch_model, hidden_size):
|
||||
position_embeddings = torch_model_reformer.embeddings.position_embeddings
|
||||
for emb_idx in range(len(position_embeddings.weights)):
|
||||
emb_weights = np.asarray(weights[3][emb_idx][0])
|
||||
assert (
|
||||
position_embeddings.weights[emb_idx].shape == emb_weights.shape
|
||||
), f"{position_embeddings[emb_idx]} emb does not match"
|
||||
assert position_embeddings.weights[emb_idx].shape == emb_weights.shape, (
|
||||
f"{position_embeddings[emb_idx]} emb does not match"
|
||||
)
|
||||
position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights))
|
||||
|
||||
trax_layer_weights = weights[5]
|
||||
assert len(torch_model_reformer.encoder.layers) * 4 == len(
|
||||
trax_layer_weights
|
||||
), "HF and trax model do not have the same number of layers"
|
||||
assert len(torch_model_reformer.encoder.layers) * 4 == len(trax_layer_weights), (
|
||||
"HF and trax model do not have the same number of layers"
|
||||
)
|
||||
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers):
|
||||
block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
|
||||
set_block_weights_in_torch(block_weights, layer, hidden_size)
|
||||
|
@ -446,12 +446,12 @@ class LSHSelfAttention(nn.Module, EfficientAttentionMixin):
|
||||
# free memory
|
||||
del hidden_states
|
||||
|
||||
assert (
|
||||
query_key_vectors.shape[-1] == self.attention_head_size
|
||||
), f"last dim of query_key_vectors is {query_key_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
assert (
|
||||
value_vectors.shape[-1] == self.attention_head_size
|
||||
), f"last dim of value_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
assert query_key_vectors.shape[-1] == self.attention_head_size, (
|
||||
f"last dim of query_key_vectors is {query_key_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
)
|
||||
assert value_vectors.shape[-1] == self.attention_head_size, (
|
||||
f"last dim of value_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
)
|
||||
|
||||
do_standard_self_attention = (sequence_length <= self.chunk_length) or (
|
||||
use_cache and past_buckets_states[1] is not None
|
||||
@ -470,9 +470,9 @@ class LSHSelfAttention(nn.Module, EfficientAttentionMixin):
|
||||
# make sure buckets has correct shape for LSH attention
|
||||
buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes * sequence_length)
|
||||
|
||||
assert (
|
||||
int(buckets.shape[-1]) == num_hashes * sequence_length
|
||||
), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}"
|
||||
assert int(buckets.shape[-1]) == num_hashes * sequence_length, (
|
||||
f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}"
|
||||
)
|
||||
|
||||
sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx(
|
||||
sequence_length, buckets, num_hashes
|
||||
@ -612,18 +612,18 @@ class LSHSelfAttention(nn.Module, EfficientAttentionMixin):
|
||||
# We sample a different random rotation for each round of hashing to
|
||||
# decrease the probability of hash misses.
|
||||
if isinstance(self.num_buckets, int):
|
||||
assert (
|
||||
self.num_buckets % 2 == 0
|
||||
), f"There should be an even number of buckets, but `self.num_buckets`: {self.num_buckets}"
|
||||
assert self.num_buckets % 2 == 0, (
|
||||
f"There should be an even number of buckets, but `self.num_buckets`: {self.num_buckets}"
|
||||
)
|
||||
rotation_size = self.num_buckets
|
||||
num_buckets = self.num_buckets
|
||||
else:
|
||||
# Factorize the hash if self.num_buckets is a list or tuple
|
||||
rotation_size, num_buckets = 0, 1
|
||||
for bucket_factor in self.num_buckets:
|
||||
assert (
|
||||
bucket_factor % 2 == 0
|
||||
), f"The number of buckets should be even, but `num_bucket`: {bucket_factor}"
|
||||
assert bucket_factor % 2 == 0, (
|
||||
f"The number of buckets should be even, but `num_bucket`: {bucket_factor}"
|
||||
)
|
||||
rotation_size = rotation_size + bucket_factor
|
||||
num_buckets = num_buckets * bucket_factor
|
||||
|
||||
@ -1090,15 +1090,15 @@ class LocalSelfAttention(nn.Module, EfficientAttentionMixin):
|
||||
key_vectors = self._split_hidden_size_dim(key_vectors, self.num_attention_heads, self.attention_head_size)
|
||||
value_vectors = self._split_hidden_size_dim(value_vectors, self.num_attention_heads, self.attention_head_size)
|
||||
|
||||
assert (
|
||||
query_vectors.shape[-1] == self.attention_head_size
|
||||
), f"last dim of query_key_vectors is {query_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
assert (
|
||||
key_vectors.shape[-1] == self.attention_head_size
|
||||
), f"last dim of query_key_vectors is {key_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
assert (
|
||||
value_vectors.shape[-1] == self.attention_head_size
|
||||
), f"last dim of query_key_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
assert query_vectors.shape[-1] == self.attention_head_size, (
|
||||
f"last dim of query_key_vectors is {query_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
)
|
||||
assert key_vectors.shape[-1] == self.attention_head_size, (
|
||||
f"last dim of query_key_vectors is {key_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
)
|
||||
assert value_vectors.shape[-1] == self.attention_head_size, (
|
||||
f"last dim of query_key_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
|
||||
)
|
||||
|
||||
if self.chunk_length is None:
|
||||
assert self.num_chunks_before == 0 and self.num_chunks_after == 0, (
|
||||
@ -1976,9 +1976,9 @@ class ReformerModel(ReformerPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
assert (
|
||||
self.config.num_hidden_layers > 0
|
||||
), "`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']"
|
||||
assert self.config.num_hidden_layers > 0, (
|
||||
"`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']"
|
||||
)
|
||||
|
||||
self.embeddings = ReformerEmbeddings(config)
|
||||
self.encoder = ReformerEncoder(config)
|
||||
@ -2039,9 +2039,9 @@ class ReformerModel(ReformerPreTrainedModel):
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
assert (
|
||||
len(input_shape) == 2
|
||||
), f"`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {input_shape}"
|
||||
assert len(input_shape) == 2, (
|
||||
f"`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {input_shape}"
|
||||
)
|
||||
|
||||
if past_buckets_states is not None:
|
||||
assert not self.training, "`past_buckets_states` can only be used for inference, not for training`."
|
||||
|
@ -311,7 +311,7 @@ class TFRegNetStage(keras.layers.Layer):
|
||||
self.layers = [
|
||||
# downsampling is done in the first layer with stride of 2
|
||||
layer(config, in_channels, out_channels, stride=stride, name="layers.0"),
|
||||
*[layer(config, out_channels, out_channels, name=f"layers.{i+1}") for i in range(depth - 1)],
|
||||
*[layer(config, out_channels, out_channels, name=f"layers.{i + 1}") for i in range(depth - 1)],
|
||||
]
|
||||
|
||||
def call(self, hidden_state):
|
||||
@ -346,7 +346,7 @@ class TFRegNetEncoder(keras.layers.Layer):
|
||||
)
|
||||
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
|
||||
for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, config.depths[1:])):
|
||||
self.stages.append(TFRegNetStage(config, in_channels, out_channels, depth=depth, name=f"stages.{i+1}"))
|
||||
self.stages.append(TFRegNetStage(config, in_channels, out_channels, depth=depth, name=f"stages.{i + 1}"))
|
||||
|
||||
def call(
|
||||
self, hidden_state: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True
|
||||
|
@ -206,7 +206,7 @@ def _convert_model(
|
||||
hf_model.load_state_dict(state_dict, strict=False)
|
||||
n_params = param_count(hf_model)
|
||||
|
||||
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
|
||||
logger.info(f"model loaded: {round(n_params / 1e6, 1)}M params")
|
||||
|
||||
hf_model.eval()
|
||||
hf_model.to(device)
|
||||
|
@ -2869,7 +2869,7 @@ class SeamlessM4TForTextToText(SeamlessM4TPreTrainedModel, GenerationMixin):
|
||||
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
|
||||
raise ValueError(
|
||||
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
|
||||
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
|
||||
{", ".join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
|
||||
)
|
||||
# tgt_lang gets priority over decoder input ids
|
||||
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
|
||||
@ -3140,7 +3140,7 @@ class SeamlessM4TForSpeechToText(SeamlessM4TPreTrainedModel, GenerationMixin):
|
||||
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
|
||||
raise ValueError(
|
||||
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
|
||||
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
|
||||
{", ".join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
|
||||
)
|
||||
# tgt_lang gets priority over decoder input ids
|
||||
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
|
||||
@ -3407,7 +3407,7 @@ class SeamlessM4TForTextToSpeech(SeamlessM4TPreTrainedModel, GenerationMixin):
|
||||
elif tgt_lang not in lang_code_to_id:
|
||||
raise ValueError(
|
||||
f"""`tgt_lang={tgt_lang}` is not supported by this model.
|
||||
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
|
||||
Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
|
||||
more languages for text translation than for speech synthesis."""
|
||||
)
|
||||
|
||||
@ -3736,7 +3736,7 @@ class SeamlessM4TForSpeechToSpeech(SeamlessM4TPreTrainedModel, GenerationMixin):
|
||||
elif tgt_lang not in lang_code_to_id:
|
||||
raise ValueError(
|
||||
f"""`tgt_lang={tgt_lang}` is not supported by this model.
|
||||
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
|
||||
Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
|
||||
more languages for text translation than for speech synthesis."""
|
||||
)
|
||||
|
||||
@ -4151,7 +4151,7 @@ class SeamlessM4TModel(SeamlessM4TPreTrainedModel, GenerationMixin):
|
||||
elif tgt_lang not in lang_code_to_id:
|
||||
raise ValueError(
|
||||
f"""`tgt_lang={tgt_lang}` is not supported by this model.
|
||||
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
|
||||
Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
|
||||
more languages for text translation than for speech synthesis."""
|
||||
)
|
||||
|
||||
|
@ -207,7 +207,7 @@ def _convert_model(
|
||||
hf_model.load_state_dict(state_dict, strict=False)
|
||||
n_params = param_count(hf_model)
|
||||
|
||||
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
|
||||
logger.info(f"model loaded: {round(n_params / 1e6, 1)}M params")
|
||||
|
||||
hf_model.eval()
|
||||
hf_model.to(device)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user