mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
Create README.md
This commit is contained in:
parent
73a0c25376
commit
c52716d46c
@ -0,0 +1,138 @@
|
||||
---
|
||||
language: multilingual
|
||||
thumbnail:
|
||||
---
|
||||
|
||||
# BERT (base-multilingual-uncased) fine-tuned on XQuAD
|
||||
|
||||
This model was created by [Google](https://github.com/google-research/bert/blob/master/multilingual.md) and fine-tuned on [XQuAD](https://github.com/deepmind/xquad) for multilingual (`11 different languages`) **Q&A** downstream task.
|
||||
|
||||
## Details of the language model('bert-base-multilingual-uncased')
|
||||
|
||||
[Language model](https://github.com/google-research/bert/blob/master/multilingual.md)
|
||||
|
||||
| Languages | Heads | Layers | Hidden | Params |
|
||||
| --------- | ----- | ------ | ------ | ------ |
|
||||
| 102 | 12 | 12 | 768 | 100 M |
|
||||
|
||||
## Details of the downstream task (multilingual Q&A) - Dataset
|
||||
|
||||
Deepmind [XQuAD](https://github.com/deepmind/xquad)
|
||||
|
||||
Languages covered:
|
||||
|
||||
- Arabic: `ar`
|
||||
- German: `de`
|
||||
- Greek: `el`
|
||||
- English: `en`
|
||||
- Spanish: `es`
|
||||
- Hindi: `hi`
|
||||
- Russian: `ru`
|
||||
- Thai: `th`
|
||||
- Turkish: `tr`
|
||||
- Vietnamese: `vi`
|
||||
- Chinese: `zh`
|
||||
|
||||
As the dataset is based on SQuAD v1.1, there are no unanswerable questions in the data. We chose this
|
||||
setting so that models can focus on cross-lingual transfer.
|
||||
|
||||
We show the average number of tokens per paragraph, question, and answer for each language in the
|
||||
table below. The statistics were obtained using [Jieba](https://github.com/fxsjy/jieba) for Chinese
|
||||
and the [Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl)
|
||||
for the other languages.
|
||||
|
||||
| | en | es | de | el | ru | tr | ar | vi | th | zh | hi |
|
||||
| --------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
||||
| Paragraph | 142.4 | 160.7 | 139.5 | 149.6 | 133.9 | 126.5 | 128.2 | 191.2 | 158.7 | 147.6 | 232.4 |
|
||||
| Question | 11.5 | 13.4 | 11.0 | 11.7 | 10.0 | 9.8 | 10.7 | 14.8 | 11.5 | 10.5 | 18.7 |
|
||||
| Answer | 3.1 | 3.6 | 3.0 | 3.3 | 3.1 | 3.1 | 3.1 | 4.5 | 4.1 | 3.5 | 5.6 |
|
||||
|
||||
Citation:
|
||||
|
||||
<details>
|
||||
@article{Artetxe:etal:2019,
|
||||
author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama},
|
||||
title = {On the cross-lingual transferability of monolingual representations},
|
||||
journal = {CoRR},
|
||||
volume = {abs/1910.11856},
|
||||
year = {2019},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {1910.11856}
|
||||
}
|
||||
</details>
|
||||
|
||||
I used `Data augmentation techniques` to obtain more samples and splited the dataset in order to have a train and test set. The test set was created in a way that contains the same number of samples for each language. Finally, I got:
|
||||
|
||||
| Dataset | # samples |
|
||||
| ----------- | --------- |
|
||||
| XQUAD train | 50 K |
|
||||
| XQUAD test | 8 K |
|
||||
|
||||
## Model training
|
||||
|
||||
The model was trained on a Tesla P100 GPU and 25GB of RAM.
|
||||
The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/distillation/run_squad_w_distillation.py)
|
||||
|
||||
## Results:
|
||||
|
||||
| Metric | # Value |
|
||||
| --------- | ----------- |
|
||||
| **Exact** | **93.03** |
|
||||
| **F1** | **94.62** |
|
||||
|
||||
## Comparison:
|
||||
|
||||
| Model | Exact | F1 score |
|
||||
| --------- | ----------- | ------- |
|
||||
| [bert-multi-cased-finetuned-xquadv1](https://huggingface.co/mrm8488/bert-multi-cased-finetuned-xquadv1) | 91.43 | 94.14 |
|
||||
|bert-multi-uncased-finetuned-xquadv1 | **93.03** | **94.62**
|
||||
|
||||
## Model in action
|
||||
|
||||
Fast usage with **pipelines**:
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
qa_pipeline = pipeline(
|
||||
"question-answering",
|
||||
model="mrm8488/bert-multi-uncased-finetuned-xquadv1",
|
||||
tokenizer="bert-multi-uncased-finetuned-xquadv1"
|
||||
)
|
||||
|
||||
|
||||
# context: Coronavirus is seeding panic in the West because it expands so fast.
|
||||
|
||||
# question: Where is seeding panic Coronavirus?
|
||||
qa_pipeline({
|
||||
'context': "कोरोनावायरस पश्चिम में आतंक बो रहा है क्योंकि यह इतनी तेजी से फैलता है।",
|
||||
'question': "कोरोनावायरस घबराहट कहां है?"
|
||||
|
||||
})
|
||||
# output: {'answer': 'पश्चिम', 'end': 18, 'score': 0.7037217439689059, 'start': 12}
|
||||
|
||||
qa_pipeline({
|
||||
'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately",
|
||||
'question': "Who has been working hard for hugginface/transformers lately?"
|
||||
|
||||
})
|
||||
# output: {'answer': 'Manuel Romero', 'end': 13, 'score': 0.7254485993702389, 'start': 0}
|
||||
|
||||
qa_pipeline({
|
||||
'context': "Manuel Romero a travaillé à peine dans le référentiel hugginface / transformers ces derniers temps",
|
||||
'question': "Pour quel référentiel a travaillé Manuel Romero récemment?"
|
||||
|
||||
})
|
||||
#output: {'answer': 'hugginface / transformers', 'end': 79, 'score': 0.6482061613915384, 'start': 54}
|
||||
```
|
||||

|
||||
|
||||
Try it on a Colab:
|
||||
|
||||
<a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Try_mrm8488_xquad_finetuned_uncased_model.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a>
|
||||
|
||||
|
||||
|
||||
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
|
||||
|
||||
> Made with <span style="color: #e25555;">♥</span> in Spain
|
Loading…
Reference in New Issue
Block a user