mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
Dilbert tests from CommonTests
This commit is contained in:
parent
778a263f09
commit
c513415b19
@ -49,6 +49,7 @@ class CommonTestCases:
|
||||
test_torchscript = True
|
||||
test_pruning = True
|
||||
test_resize_embeddings = True
|
||||
test_head_masking = True
|
||||
|
||||
def test_initialization(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
@ -159,6 +160,9 @@ class CommonTestCases:
|
||||
|
||||
|
||||
def test_headmasking(self):
|
||||
if not self.test_head_masking:
|
||||
return
|
||||
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
config.output_attentions = True
|
||||
@ -282,6 +286,9 @@ class CommonTestCases:
|
||||
self.assertTrue(models_equal)
|
||||
|
||||
def test_tie_model_weights(self):
|
||||
if not self.test_torchscript:
|
||||
return
|
||||
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
def check_same_values(layer_1, layer_2):
|
||||
|
219
pytorch_transformers/tests/modeling_dilbert_test.py
Normal file
219
pytorch_transformers/tests/modeling_dilbert_test.py
Normal file
@ -0,0 +1,219 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
from pytorch_transformers import (DilBertConfig, DilBertModel, DilBertForMaskedLM,
|
||||
DilBertForQuestionAnswering, DilBertForSequenceClassification)
|
||||
from pytorch_transformers.modeling_dilbert import DILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
from .modeling_common_test import (CommonTestCases, ConfigTester, ids_tensor)
|
||||
|
||||
|
||||
class DilBertModelTest(CommonTestCases.CommonModelTester):
|
||||
|
||||
all_model_classes = (DilBertModel, DilBertForMaskedLM, DilBertForQuestionAnswering,
|
||||
DilBertForSequenceClassification)
|
||||
test_pruning = False
|
||||
test_torchscript = False
|
||||
test_resize_embeddings = False
|
||||
test_head_masking = False
|
||||
|
||||
class DilBertModelTester(object):
|
||||
|
||||
def __init__(self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=False,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
num_choices=4,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_labels = num_labels
|
||||
self.num_choices = num_choices
|
||||
self.scope = scope
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = DilBertConfig(
|
||||
vocab_size_or_config_json_file=self.vocab_size,
|
||||
dim=self.hidden_size,
|
||||
n_layers=self.num_hidden_layers,
|
||||
n_heads=self.num_attention_heads,
|
||||
hidden_dim=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
dropout=self.hidden_dropout_prob,
|
||||
attention_dropout=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
initializer_range=self.initializer_range)
|
||||
|
||||
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def check_loss_output(self, result):
|
||||
self.parent.assertListEqual(
|
||||
list(result["loss"].size()),
|
||||
[])
|
||||
|
||||
def create_and_check_dilbert_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = DilBertModel(config=config)
|
||||
model.eval()
|
||||
sequence_output, pooled_output = model(input_ids, input_mask)
|
||||
sequence_output, pooled_output = model(input_ids)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output,
|
||||
"pooled_output": pooled_output,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["sequence_output"].size()),
|
||||
[self.batch_size, self.seq_length, self.hidden_size])
|
||||
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
|
||||
|
||||
def create_and_check_dilbert_for_masked_lm(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = DilBertForMaskedLM(config=config)
|
||||
model.eval()
|
||||
loss, prediction_scores = model(input_ids, input_mask, token_labels)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"prediction_scores": prediction_scores,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["prediction_scores"].size()),
|
||||
[self.batch_size, self.seq_length, self.vocab_size])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_dilbert_for_question_answering(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = DilBertForQuestionAnswering(config=config)
|
||||
model.eval()
|
||||
loss, start_logits, end_logits = model(input_ids, input_mask, sequence_labels, sequence_labels)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"start_logits": start_logits,
|
||||
"end_logits": end_logits,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["start_logits"].size()),
|
||||
[self.batch_size, self.seq_length])
|
||||
self.parent.assertListEqual(
|
||||
list(result["end_logits"].size()),
|
||||
[self.batch_size, self.seq_length])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_dilbert_for_sequence_classification(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
config.num_labels = self.num_labels
|
||||
model = DilBertForSequenceClassification(config)
|
||||
model.eval()
|
||||
loss, logits = model(input_ids, input_mask, sequence_labels)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"logits": logits,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["logits"].size()),
|
||||
[self.batch_size, self.num_labels])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
|
||||
inputs_dict = {'input_ids': input_ids, 'attention_mask': input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = DilBertModelTest.DilBertModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=DilBertConfig, dim=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_dilbert_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_dilbert_model(*config_and_inputs)
|
||||
|
||||
def test_for_masked_lm(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_dilbert_for_masked_lm(*config_and_inputs)
|
||||
|
||||
def test_for_question_answering(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_dilbert_for_question_answering(*config_and_inputs)
|
||||
|
||||
def test_for_sequence_classification(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_dilbert_for_sequence_classification(*config_and_inputs)
|
||||
|
||||
# @pytest.mark.slow
|
||||
# def test_model_from_pretrained(self):
|
||||
# cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
# for model_name in list(DILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
||||
# model = DilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
# shutil.rmtree(cache_dir)
|
||||
# self.assertIsNotNone(model)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue
Block a user