mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Create README.md - Model card (#5658)
Model card for sentence-transformers/bert-base-nli-max-tokens
This commit is contained in:
parent
edfd82f5ff
commit
c483803d1b
@ -0,0 +1,88 @@
|
||||
---
|
||||
language: english
|
||||
tags:
|
||||
- exbert
|
||||
license: apache-2.0
|
||||
datasets:
|
||||
- SNLI
|
||||
- MultiNLI
|
||||
---
|
||||
|
||||
# BERT base model (uncased) for Sentence Embeddings
|
||||
This is the `bert-base-nli-max-tokens` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings.
|
||||
The model is described in the paper [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)
|
||||
|
||||
## Usage (HuggingFace Models Repository)
|
||||
|
||||
You can use the model directly from the model repository to compute sentence embeddings. It uses max pooling to generate a fixed sized sentence embedding:
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import torch
|
||||
|
||||
|
||||
#Max Pooling - Take the max value over time for every dimension
|
||||
def max_pooling(model_output, attention_mask):
|
||||
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
||||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||||
token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
|
||||
max_over_time = torch.max(token_embeddings, 1)[0]
|
||||
return max_over_time
|
||||
|
||||
|
||||
#Sentences we want sentence embeddings for
|
||||
sentences = ['This framework generates embeddings for each input sentence',
|
||||
'Sentences are passed as a list of string.',
|
||||
'The quick brown fox jumps over the lazy dog.']
|
||||
|
||||
#Load AutoModel from huggingface model repository
|
||||
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/bert-base-nli-max-tokens")
|
||||
model = AutoModel.from_pretrained("sentence-transformers/bert-base-nli-max-tokens")
|
||||
|
||||
#Tokenize sentences
|
||||
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
|
||||
|
||||
#Compute token embeddings
|
||||
with torch.no_grad():
|
||||
model_output = model(**encoded_input)
|
||||
|
||||
#Perform pooling. In this case, max pooling
|
||||
sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
|
||||
|
||||
|
||||
print("Sentence embeddings:")
|
||||
print(sentence_embeddings)
|
||||
```
|
||||
|
||||
## Usage (Sentence-Transformers)
|
||||
Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
|
||||
```
|
||||
pip install -U sentence-transformers
|
||||
```
|
||||
|
||||
Then you can use the model like this:
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
model = SentenceTransformer('bert-base-nli-max-tokens')
|
||||
sentences = ['This framework generates embeddings for each input sentence',
|
||||
'Sentences are passed as a list of string.',
|
||||
'The quick brown fox jumps over the lazy dog.']
|
||||
sentence_embeddings = model.encode(sentences)
|
||||
|
||||
print("Sentence embeddings:")
|
||||
print(sentence_embeddings)
|
||||
```
|
||||
|
||||
|
||||
## Citing & Authors
|
||||
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
||||
```
|
||||
@inproceedings{reimers-2019-sentence-bert,
|
||||
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
||||
author = "Reimers, Nils and Gurevych, Iryna",
|
||||
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
||||
month = "11",
|
||||
year = "2019",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "http://arxiv.org/abs/1908.10084",
|
||||
}
|
||||
```
|
Loading…
Reference in New Issue
Block a user