External MLM head

This commit is contained in:
Lysandre 2019-10-31 15:30:11 +00:00 committed by Lysandre Debut
parent b21402fc86
commit c4403006b8
2 changed files with 41 additions and 11 deletions

View File

@ -1,3 +1,20 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ALBERT model configuration """
from .configuration_utils import PretrainedConfig
class AlbertConfig(PretrainedConfig):

View File

@ -401,6 +401,26 @@ class AlbertModel(BertModel):
outputs = (sequence_output, pooled_output) + encoder_outputs[1:] # add hidden_states and attentions if they are here
return outputs
class AlbertMLMHead(nn.Module):
def __init__(self, config):
super(AlbertMLMHead, self).__init__()
self.LayerNorm = nn.LayerNorm(config.embedding_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.decoder(hidden_states)
prediction_scores = hidden_states + self.bias
return prediction_scores
@add_start_docstrings("Bert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING, ALBERT_INPUTS_DOCSTRING)
class AlbertForMaskedLM(BertPreTrainedModel):
@ -433,13 +453,8 @@ class AlbertForMaskedLM(BertPreTrainedModel):
def __init__(self, config):
super(AlbertForMaskedLM, self).__init__(config)
self.config = config
self.albert = AlbertModel(config)
self.LayerNorm = nn.LayerNorm(config.embedding_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
self.activation = ACT2FN[config.hidden_act]
self.predictions = AlbertMLMHead(config)
self.init_weights()
self.tie_weights()
@ -448,17 +463,15 @@ class AlbertForMaskedLM(BertPreTrainedModel):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.decoder,
self._tie_or_clone_weights(self.predictions.decoder,
self.albert.embeddings.word_embeddings)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
masked_lm_labels=None):
outputs = self.albert(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None)
sequence_outputs = outputs[0]
hidden_states = self.dense(sequence_outputs)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
prediction_scores = self.decoder(hidden_states)
prediction_scores = self.predictions(sequence_outputs)
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
if masked_lm_labels is not None: