mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 18:22:34 +06:00
[VideoMAE] Improve code examples (#18919)
* Simplify code example * Add seed
This commit is contained in:
parent
0a632f076d
commit
c25f27fa6a
@ -598,21 +598,18 @@ class VideoMAEModel(VideoMAEPreTrainedModel):
|
|||||||
>>> file_path = hf_hub_download(
|
>>> file_path = hf_hub_download(
|
||||||
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
||||||
... )
|
... )
|
||||||
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
|
>>> videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0))
|
||||||
|
|
||||||
>>> # sample 16 frames
|
>>> # sample 16 frames
|
||||||
>>> vr.seek(0)
|
>>> videoreader.seek(0)
|
||||||
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(vr))
|
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(videoreader))
|
||||||
>>> buffer = vr.get_batch(indices).asnumpy()
|
>>> video = videoreader.get_batch(indices).asnumpy()
|
||||||
|
|
||||||
>>> # create a list of NumPy arrays
|
|
||||||
>>> video = [buffer[i] for i in range(buffer.shape[0])]
|
|
||||||
|
|
||||||
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base")
|
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base")
|
||||||
>>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")
|
>>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")
|
||||||
|
|
||||||
>>> # prepare video for the model
|
>>> # prepare video for the model
|
||||||
>>> inputs = feature_extractor(video, return_tensors="pt")
|
>>> inputs = feature_extractor(list(video), return_tensors="pt")
|
||||||
|
|
||||||
>>> # forward pass
|
>>> # forward pass
|
||||||
>>> outputs = model(**inputs)
|
>>> outputs = model(**inputs)
|
||||||
@ -943,10 +940,13 @@ class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
|
|||||||
```python
|
```python
|
||||||
>>> from decord import VideoReader, cpu
|
>>> from decord import VideoReader, cpu
|
||||||
>>> import torch
|
>>> import torch
|
||||||
|
>>> import numpy as np
|
||||||
|
|
||||||
>>> from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
|
>>> from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
|
||||||
>>> from huggingface_hub import hf_hub_download
|
>>> from huggingface_hub import hf_hub_download
|
||||||
|
|
||||||
|
>>> np.random.seed(0)
|
||||||
|
|
||||||
|
|
||||||
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
||||||
... converted_len = int(clip_len * frame_sample_rate)
|
... converted_len = int(clip_len * frame_sample_rate)
|
||||||
@ -961,20 +961,17 @@ class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
|
|||||||
>>> file_path = hf_hub_download(
|
>>> file_path = hf_hub_download(
|
||||||
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
||||||
... )
|
... )
|
||||||
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
|
>>> videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0))
|
||||||
|
|
||||||
>>> # sample 16 frames
|
>>> # sample 16 frames
|
||||||
>>> vr.seek(0)
|
>>> videoreader.seek(0)
|
||||||
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(vr))
|
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(videoreader))
|
||||||
>>> buffer = vr.get_batch(indices).asnumpy()
|
>>> video = videoreader.get_batch(indices).asnumpy()
|
||||||
|
|
||||||
>>> # create a list of NumPy arrays
|
|
||||||
>>> video = [buffer[i] for i in range(buffer.shape[0])]
|
|
||||||
|
|
||||||
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
|
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
|
||||||
>>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
|
>>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
|
||||||
|
|
||||||
>>> inputs = feature_extractor(video, return_tensors="pt")
|
>>> inputs = feature_extractor(list(video), return_tensors="pt")
|
||||||
|
|
||||||
>>> with torch.no_grad():
|
>>> with torch.no_grad():
|
||||||
... outputs = model(**inputs)
|
... outputs = model(**inputs)
|
||||||
|
Loading…
Reference in New Issue
Block a user