mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
Update tiny models for pipeline testing. (#24364)
* fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
56efbf4301
commit
c23d131eab
@ -2965,11 +2965,13 @@ else:
|
|||||||
)
|
)
|
||||||
_import_structure["models.auto"].extend(
|
_import_structure["models.auto"].extend(
|
||||||
[
|
[
|
||||||
|
"TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
|
||||||
"TF_MODEL_FOR_CAUSAL_LM_MAPPING",
|
"TF_MODEL_FOR_CAUSAL_LM_MAPPING",
|
||||||
"TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
|
"TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
|
||||||
"TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
|
"TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
|
||||||
"TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
|
"TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
|
||||||
"TF_MODEL_FOR_MASKED_LM_MAPPING",
|
"TF_MODEL_FOR_MASKED_LM_MAPPING",
|
||||||
|
"TF_MODEL_FOR_MASK_GENERATION_MAPPING",
|
||||||
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
|
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
|
||||||
"TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
|
"TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
|
||||||
"TF_MODEL_FOR_PRETRAINING_MAPPING",
|
"TF_MODEL_FOR_PRETRAINING_MAPPING",
|
||||||
@ -6350,9 +6352,11 @@ if TYPE_CHECKING:
|
|||||||
TFAlbertPreTrainedModel,
|
TFAlbertPreTrainedModel,
|
||||||
)
|
)
|
||||||
from .models.auto import (
|
from .models.auto import (
|
||||||
|
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
|
||||||
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
|
||||||
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
|
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
|
||||||
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
||||||
|
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
|
||||||
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
||||||
TF_MODEL_FOR_MASKED_LM_MAPPING,
|
TF_MODEL_FOR_MASKED_LM_MAPPING,
|
||||||
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
||||||
|
@ -114,8 +114,10 @@ except OptionalDependencyNotAvailable:
|
|||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
_import_structure["modeling_tf_auto"] = [
|
_import_structure["modeling_tf_auto"] = [
|
||||||
|
"TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
|
||||||
"TF_MODEL_FOR_CAUSAL_LM_MAPPING",
|
"TF_MODEL_FOR_CAUSAL_LM_MAPPING",
|
||||||
"TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
|
"TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
|
||||||
|
"TF_MODEL_FOR_MASK_GENERATION_MAPPING",
|
||||||
"TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
|
"TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
|
||||||
"TF_MODEL_FOR_MASKED_LM_MAPPING",
|
"TF_MODEL_FOR_MASKED_LM_MAPPING",
|
||||||
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
|
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
|
||||||
@ -279,9 +281,11 @@ if TYPE_CHECKING:
|
|||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
from .modeling_tf_auto import (
|
from .modeling_tf_auto import (
|
||||||
|
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
|
||||||
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
|
||||||
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
|
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
|
||||||
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
||||||
|
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
|
||||||
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
||||||
TF_MODEL_FOR_MASKED_LM_MAPPING,
|
TF_MODEL_FOR_MASKED_LM_MAPPING,
|
||||||
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
||||||
|
@ -216,6 +216,9 @@ class TFAlbertPreTrainedModel(metaclass=DummyObject):
|
|||||||
requires_backends(self, ["tf"])
|
requires_backends(self, ["tf"])
|
||||||
|
|
||||||
|
|
||||||
|
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None
|
||||||
|
|
||||||
|
|
||||||
TF_MODEL_FOR_CAUSAL_LM_MAPPING = None
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING = None
|
||||||
|
|
||||||
|
|
||||||
@ -225,6 +228,9 @@ TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = None
|
|||||||
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None
|
||||||
|
|
||||||
|
|
||||||
|
TF_MODEL_FOR_MASK_GENERATION_MAPPING = None
|
||||||
|
|
||||||
|
|
||||||
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None
|
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None
|
||||||
|
|
||||||
|
|
||||||
|
@ -25,6 +25,7 @@ from transformers.testing_utils import require_torch, slow, torch_device
|
|||||||
|
|
||||||
from ...test_configuration_common import ConfigTester
|
from ...test_configuration_common import ConfigTester
|
||||||
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
||||||
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
||||||
|
|
||||||
|
|
||||||
TOLERANCE = 1e-4
|
TOLERANCE = 1e-4
|
||||||
@ -201,9 +202,10 @@ class AutoformerModelTester:
|
|||||||
|
|
||||||
|
|
||||||
@require_torch
|
@require_torch
|
||||||
class AutoformerModelTest(ModelTesterMixin, unittest.TestCase):
|
class AutoformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||||
all_model_classes = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
|
all_model_classes = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
|
||||||
all_generative_model_classes = (AutoformerForPrediction,) if is_torch_available() else ()
|
all_generative_model_classes = (AutoformerForPrediction,) if is_torch_available() else ()
|
||||||
|
pipeline_model_mapping = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
|
||||||
test_pruning = False
|
test_pruning = False
|
||||||
test_head_masking = False
|
test_head_masking = False
|
||||||
test_missing_keys = False
|
test_missing_keys = False
|
||||||
|
@ -117,7 +117,7 @@ class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
|
|||||||
test_pruning = False
|
test_pruning = False
|
||||||
test_headmasking = False
|
test_headmasking = False
|
||||||
test_resize_embeddings = False
|
test_resize_embeddings = False
|
||||||
pipeline_model_mapping = {}
|
pipeline_model_mapping = {"feature-extraction": EncodecModel} if is_torch_available() else {}
|
||||||
input_name = "input_values"
|
input_name = "input_values"
|
||||||
|
|
||||||
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
||||||
|
@ -383,11 +383,22 @@ class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
|
|||||||
all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else ()
|
all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else ()
|
||||||
all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else ()
|
all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else ()
|
||||||
pipeline_model_mapping = (
|
pipeline_model_mapping = (
|
||||||
{"feature-extraction": GitModel, "text-generation": GitForCausalLM} if is_torch_available() else {}
|
{"feature-extraction": GitModel, "image-to-text": GitForCausalLM, "text-generation": GitForCausalLM}
|
||||||
|
if is_torch_available()
|
||||||
|
else {}
|
||||||
)
|
)
|
||||||
fx_compatible = False
|
fx_compatible = False
|
||||||
test_torchscript = False
|
test_torchscript = False
|
||||||
|
|
||||||
|
# `GitForCausalLM` doesn't fit into image-to-text pipeline. We might need to overwrite its `generate` function.
|
||||||
|
def is_pipeline_test_to_skip(
|
||||||
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
||||||
|
):
|
||||||
|
if pipeline_test_casse_name == "ImageToTextPipelineTests":
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
# special case for GitForCausalLM model
|
# special case for GitForCausalLM model
|
||||||
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
||||||
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
||||||
|
@ -270,10 +270,7 @@ class LayoutLMv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
|
|||||||
else ()
|
else ()
|
||||||
)
|
)
|
||||||
pipeline_model_mapping = (
|
pipeline_model_mapping = (
|
||||||
{
|
{"document-question-answering": LayoutLMv2ForQuestionAnswering, "feature-extraction": LayoutLMv2Model}
|
||||||
"document-question-answering": LayoutLMv2ForQuestionAnswering,
|
|
||||||
"feature-extraction": LayoutLMv2Model,
|
|
||||||
}
|
|
||||||
if is_torch_available()
|
if is_torch_available()
|
||||||
else {}
|
else {}
|
||||||
)
|
)
|
||||||
|
@ -286,10 +286,7 @@ class LayoutLMv3ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
|
|||||||
else ()
|
else ()
|
||||||
)
|
)
|
||||||
pipeline_model_mapping = (
|
pipeline_model_mapping = (
|
||||||
{
|
{"document-question-answering": LayoutLMv3ForQuestionAnswering, "feature-extraction": LayoutLMv3Model}
|
||||||
"document-question-answering": LayoutLMv3ForQuestionAnswering,
|
|
||||||
"feature-extraction": LayoutLMv3Model,
|
|
||||||
}
|
|
||||||
if is_torch_available()
|
if is_torch_available()
|
||||||
else {}
|
else {}
|
||||||
)
|
)
|
||||||
|
@ -278,13 +278,7 @@ class TFLayoutLMv3ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Te
|
|||||||
else ()
|
else ()
|
||||||
)
|
)
|
||||||
pipeline_model_mapping = (
|
pipeline_model_mapping = (
|
||||||
{
|
{"document-question-answering": TFLayoutLMv3ForQuestionAnswering, "feature-extraction": TFLayoutLMv3Model}
|
||||||
"feature-extraction": TFLayoutLMv3Model,
|
|
||||||
"question-answering": TFLayoutLMv3ForQuestionAnswering,
|
|
||||||
"text-classification": TFLayoutLMv3ForSequenceClassification,
|
|
||||||
"token-classification": TFLayoutLMv3ForTokenClassification,
|
|
||||||
"zero-shot": TFLayoutLMv3ForSequenceClassification,
|
|
||||||
}
|
|
||||||
if is_tf_available()
|
if is_tf_available()
|
||||||
else {}
|
else {}
|
||||||
)
|
)
|
||||||
|
@ -32,6 +32,8 @@ if is_torch_available():
|
|||||||
|
|
||||||
from transformers import TimmBackbone, TimmBackboneConfig
|
from transformers import TimmBackbone, TimmBackboneConfig
|
||||||
|
|
||||||
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
||||||
|
|
||||||
|
|
||||||
class TimmBackboneModelTester:
|
class TimmBackboneModelTester:
|
||||||
def __init__(
|
def __init__(
|
||||||
@ -95,8 +97,9 @@ class TimmBackboneModelTester:
|
|||||||
|
|
||||||
@require_torch
|
@require_torch
|
||||||
@require_timm
|
@require_timm
|
||||||
class TimmBackboneModelTest(ModelTesterMixin, BackboneTesterMixin, unittest.TestCase):
|
class TimmBackboneModelTest(ModelTesterMixin, BackboneTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||||
all_model_classes = (TimmBackbone,) if is_torch_available() else ()
|
all_model_classes = (TimmBackbone,) if is_torch_available() else ()
|
||||||
|
pipeline_model_mapping = {"feature-extraction": TimmBackbone} if is_torch_available() else {}
|
||||||
test_resize_embeddings = False
|
test_resize_embeddings = False
|
||||||
test_head_masking = False
|
test_head_masking = False
|
||||||
test_pruning = False
|
test_pruning = False
|
||||||
|
@ -322,7 +322,7 @@ class TFWav2Vec2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.Test
|
|||||||
(TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
|
(TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
|
||||||
)
|
)
|
||||||
pipeline_model_mapping = (
|
pipeline_model_mapping = (
|
||||||
{"feature-extraction": TFWav2Vec2Model, "audio-classification": TFWav2Vec2ForSequenceClassification}
|
{"audio-classification": TFWav2Vec2ForSequenceClassification, "feature-extraction": TFWav2Vec2Model}
|
||||||
if is_tf_available()
|
if is_tf_available()
|
||||||
else {}
|
else {}
|
||||||
)
|
)
|
||||||
|
@ -16,7 +16,7 @@ import unittest
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
||||||
from transformers.pipelines import AudioClassificationPipeline, pipeline
|
from transformers.pipelines import AudioClassificationPipeline, pipeline
|
||||||
from transformers.testing_utils import (
|
from transformers.testing_utils import (
|
||||||
is_pipeline_test,
|
is_pipeline_test,
|
||||||
@ -31,9 +31,9 @@ from .test_pipelines_common import ANY
|
|||||||
|
|
||||||
|
|
||||||
@is_pipeline_test
|
@is_pipeline_test
|
||||||
@require_torch
|
|
||||||
class AudioClassificationPipelineTests(unittest.TestCase):
|
class AudioClassificationPipelineTests(unittest.TestCase):
|
||||||
model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
||||||
|
tf_model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
||||||
|
|
||||||
def get_test_pipeline(self, model, tokenizer, processor):
|
def get_test_pipeline(self, model, tokenizer, processor):
|
||||||
audio_classifier = AudioClassificationPipeline(model=model, feature_extractor=processor)
|
audio_classifier = AudioClassificationPipeline(model=model, feature_extractor=processor)
|
||||||
|
@ -18,7 +18,12 @@ from typing import Dict
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from transformers import MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline
|
from transformers import (
|
||||||
|
MODEL_FOR_MASK_GENERATION_MAPPING,
|
||||||
|
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
|
||||||
|
is_vision_available,
|
||||||
|
pipeline,
|
||||||
|
)
|
||||||
from transformers.pipelines import MaskGenerationPipeline
|
from transformers.pipelines import MaskGenerationPipeline
|
||||||
from transformers.testing_utils import (
|
from transformers.testing_utils import (
|
||||||
is_pipeline_test,
|
is_pipeline_test,
|
||||||
@ -58,6 +63,9 @@ class MaskGenerationPipelineTests(unittest.TestCase):
|
|||||||
model_mapping = dict(
|
model_mapping = dict(
|
||||||
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items()) if MODEL_FOR_MASK_GENERATION_MAPPING else [])
|
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items()) if MODEL_FOR_MASK_GENERATION_MAPPING else [])
|
||||||
)
|
)
|
||||||
|
tf_model_mapping = dict(
|
||||||
|
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items()) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else [])
|
||||||
|
)
|
||||||
|
|
||||||
def get_test_pipeline(self, model, tokenizer, processor):
|
def get_test_pipeline(self, model, tokenizer, processor):
|
||||||
image_segmenter = MaskGenerationPipeline(model=model, image_processor=processor)
|
image_segmenter = MaskGenerationPipeline(model=model, image_processor=processor)
|
||||||
@ -66,7 +74,7 @@ class MaskGenerationPipelineTests(unittest.TestCase):
|
|||||||
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
||||||
]
|
]
|
||||||
|
|
||||||
# TODO: Fix me @Arthur
|
# TODO: Implement me @Arthur
|
||||||
def run_pipeline_test(self, mask_generator, examples):
|
def run_pipeline_test(self, mask_generator, examples):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@ -17,6 +17,7 @@ import copy
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
import unittest
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from transformers.testing_utils import (
|
from transformers.testing_utils import (
|
||||||
@ -314,7 +315,6 @@ class PipelineTesterMixin:
|
|||||||
run_batch_test(pipeline, examples)
|
run_batch_test(pipeline, examples)
|
||||||
|
|
||||||
@is_pipeline_test
|
@is_pipeline_test
|
||||||
@require_torch
|
|
||||||
def test_pipeline_audio_classification(self):
|
def test_pipeline_audio_classification(self):
|
||||||
self.run_task_tests(task="audio-classification")
|
self.run_task_tests(task="audio-classification")
|
||||||
|
|
||||||
@ -366,6 +366,7 @@ class PipelineTesterMixin:
|
|||||||
def test_pipeline_image_to_text(self):
|
def test_pipeline_image_to_text(self):
|
||||||
self.run_task_tests(task="image-to-text")
|
self.run_task_tests(task="image-to-text")
|
||||||
|
|
||||||
|
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
|
||||||
@is_pipeline_test
|
@is_pipeline_test
|
||||||
@require_vision
|
@require_vision
|
||||||
@require_torch
|
@require_torch
|
||||||
|
@ -1597,7 +1597,8 @@
|
|||||||
"EfficientFormerImageProcessor"
|
"EfficientFormerImageProcessor"
|
||||||
],
|
],
|
||||||
"model_classes": [
|
"model_classes": [
|
||||||
"EfficientFormerForImageClassification"
|
"EfficientFormerForImageClassification",
|
||||||
|
"TFEfficientFormerForImageClassification"
|
||||||
],
|
],
|
||||||
"sha": "ebadb628e12f268e321fcc756fa4606f7b5b3178"
|
"sha": "ebadb628e12f268e321fcc756fa4606f7b5b3178"
|
||||||
},
|
},
|
||||||
@ -1607,7 +1608,8 @@
|
|||||||
"EfficientFormerImageProcessor"
|
"EfficientFormerImageProcessor"
|
||||||
],
|
],
|
||||||
"model_classes": [
|
"model_classes": [
|
||||||
"EfficientFormerForImageClassificationWithTeacher"
|
"EfficientFormerForImageClassificationWithTeacher",
|
||||||
|
"TFEfficientFormerForImageClassificationWithTeacher"
|
||||||
],
|
],
|
||||||
"sha": "1beabce6da9cb4ebbeafcd1ef23fac36b4a269e2"
|
"sha": "1beabce6da9cb4ebbeafcd1ef23fac36b4a269e2"
|
||||||
},
|
},
|
||||||
@ -1617,7 +1619,8 @@
|
|||||||
"EfficientFormerImageProcessor"
|
"EfficientFormerImageProcessor"
|
||||||
],
|
],
|
||||||
"model_classes": [
|
"model_classes": [
|
||||||
"EfficientFormerModel"
|
"EfficientFormerModel",
|
||||||
|
"TFEfficientFormerModel"
|
||||||
],
|
],
|
||||||
"sha": "200fae5b875844d09c8a91d1c155b72b06a517f6"
|
"sha": "200fae5b875844d09c8a91d1c155b72b06a517f6"
|
||||||
},
|
},
|
||||||
@ -1736,6 +1739,16 @@
|
|||||||
],
|
],
|
||||||
"sha": "312b532cbef26610d80f2bd008650160cae4f7a1"
|
"sha": "312b532cbef26610d80f2bd008650160cae4f7a1"
|
||||||
},
|
},
|
||||||
|
"EncodecModel": {
|
||||||
|
"tokenizer_classes": [],
|
||||||
|
"processor_classes": [
|
||||||
|
"EncodecFeatureExtractor"
|
||||||
|
],
|
||||||
|
"model_classes": [
|
||||||
|
"EncodecModel"
|
||||||
|
],
|
||||||
|
"sha": "e14c5a2fd6529c85cd4ac5a05ee9e550ced6a006"
|
||||||
|
},
|
||||||
"EncoderDecoderModel": {
|
"EncoderDecoderModel": {
|
||||||
"tokenizer_classes": [
|
"tokenizer_classes": [
|
||||||
"BertTokenizer",
|
"BertTokenizer",
|
||||||
@ -3888,6 +3901,36 @@
|
|||||||
],
|
],
|
||||||
"sha": "b3a1452e7cb44b600b21ee14f3d5382366855a46"
|
"sha": "b3a1452e7cb44b600b21ee14f3d5382366855a46"
|
||||||
},
|
},
|
||||||
|
"MobileViTV2ForImageClassification": {
|
||||||
|
"tokenizer_classes": [],
|
||||||
|
"processor_classes": [
|
||||||
|
"MobileViTImageProcessor"
|
||||||
|
],
|
||||||
|
"model_classes": [
|
||||||
|
"MobileViTV2ForImageClassification"
|
||||||
|
],
|
||||||
|
"sha": "25752b0967ad594341d1b685401450d7f698433c"
|
||||||
|
},
|
||||||
|
"MobileViTV2ForSemanticSegmentation": {
|
||||||
|
"tokenizer_classes": [],
|
||||||
|
"processor_classes": [
|
||||||
|
"MobileViTImageProcessor"
|
||||||
|
],
|
||||||
|
"model_classes": [
|
||||||
|
"MobileViTV2ForSemanticSegmentation"
|
||||||
|
],
|
||||||
|
"sha": "13b953f50be33219d55a12f1098be38b88000897"
|
||||||
|
},
|
||||||
|
"MobileViTV2Model": {
|
||||||
|
"tokenizer_classes": [],
|
||||||
|
"processor_classes": [
|
||||||
|
"MobileViTImageProcessor"
|
||||||
|
],
|
||||||
|
"model_classes": [
|
||||||
|
"MobileViTV2Model"
|
||||||
|
],
|
||||||
|
"sha": "2f46357659db2d6d54d870e28073deeea1c8cb64"
|
||||||
|
},
|
||||||
"MvpForCausalLM": {
|
"MvpForCausalLM": {
|
||||||
"tokenizer_classes": [
|
"tokenizer_classes": [
|
||||||
"MvpTokenizer",
|
"MvpTokenizer",
|
||||||
@ -4452,6 +4495,16 @@
|
|||||||
],
|
],
|
||||||
"sha": "83ec4d2d61ed62525ee033e13d144817beb29d19"
|
"sha": "83ec4d2d61ed62525ee033e13d144817beb29d19"
|
||||||
},
|
},
|
||||||
|
"Pix2StructForConditionalGeneration": {
|
||||||
|
"tokenizer_classes": [
|
||||||
|
"T5TokenizerFast"
|
||||||
|
],
|
||||||
|
"processor_classes": [
|
||||||
|
"Pix2StructImageProcessor"
|
||||||
|
],
|
||||||
|
"model_classes": [],
|
||||||
|
"sha": "42b3de00ad535076c4893e4ac5ae2d2748cc4ccb"
|
||||||
|
},
|
||||||
"PoolFormerForImageClassification": {
|
"PoolFormerForImageClassification": {
|
||||||
"tokenizer_classes": [],
|
"tokenizer_classes": [],
|
||||||
"processor_classes": [
|
"processor_classes": [
|
||||||
@ -5123,7 +5176,8 @@
|
|||||||
"SamImageProcessor"
|
"SamImageProcessor"
|
||||||
],
|
],
|
||||||
"model_classes": [
|
"model_classes": [
|
||||||
"SamModel"
|
"SamModel",
|
||||||
|
"TFSamModel"
|
||||||
],
|
],
|
||||||
"sha": "eca8651bc84e5ac3b1b62e784b744a6bd1b82575"
|
"sha": "eca8651bc84e5ac3b1b62e784b744a6bd1b82575"
|
||||||
},
|
},
|
||||||
|
Loading…
Reference in New Issue
Block a user