mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
add tf bert files
This commit is contained in:
parent
85df4f7cca
commit
bffd17a43d
@ -83,6 +83,9 @@ def url_to_filename(url, etag=None):
|
||||
Convert `url` into a hashed filename in a repeatable way.
|
||||
If `etag` is specified, append its hash to the url's, delimited
|
||||
by a period.
|
||||
If the url ends with .h5 (Keras HDF5 weights) ands '.h5' to the name
|
||||
so that TF 2.0 can identify it as a HDF5 file
|
||||
(see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
|
||||
"""
|
||||
url_bytes = url.encode('utf-8')
|
||||
url_hash = sha256(url_bytes)
|
||||
@ -93,6 +96,9 @@ def url_to_filename(url, etag=None):
|
||||
etag_hash = sha256(etag_bytes)
|
||||
filename += '.' + etag_hash.hexdigest()
|
||||
|
||||
if url.endswith('.h5'):
|
||||
filename += '.h5'
|
||||
|
||||
return filename
|
||||
|
||||
|
||||
|
832
pytorch_transformers/modeling_tf_bert.py
Normal file
832
pytorch_transformers/modeling_tf_bert.py
Normal file
@ -0,0 +1,832 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" TF 2.0 BERT model. """
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
from io import open
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from .configuration_bert import BertConfig
|
||||
from .modeling_tf_utils import TFPreTrainedModel
|
||||
from .file_utils import add_start_docstrings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
|
||||
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5",
|
||||
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-tf_model.h5",
|
||||
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-tf_model.h5",
|
||||
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-tf_model.h5",
|
||||
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-tf_model.h5",
|
||||
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-tf_model.h5",
|
||||
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-tf_model.h5",
|
||||
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-tf_model.h5",
|
||||
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-tf_model.h5",
|
||||
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-tf_model.h5",
|
||||
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-tf_model.h5",
|
||||
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-tf_model.h5",
|
||||
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-tf_model.h5",
|
||||
}
|
||||
|
||||
|
||||
def load_pt_weights_in_bert(tf_model, config, pytorch_checkpoint_path):
|
||||
""" Load pytorch checkpoints in a TF 2.0 model and save it using HDF5 format
|
||||
We use HDF5 to easily do transfer learning
|
||||
(see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
|
||||
"""
|
||||
try:
|
||||
import re
|
||||
import torch
|
||||
import numpy
|
||||
from tensorflow.python.keras import backend as K
|
||||
except ImportError:
|
||||
logger.error("Loading a PyTorch model in TensorFlow, requires PyTorch to be installed. Please see "
|
||||
"https://pytorch.org/ for installation instructions.")
|
||||
raise
|
||||
|
||||
pt_path = os.path.abspath(pytorch_checkpoint_path)
|
||||
logger.info("Loading PyTorch weights from {}".format(pt_path))
|
||||
# Load pytorch model
|
||||
state_dict = torch.load(pt_path, map_location='cpu')
|
||||
|
||||
inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
|
||||
tf_inputs = tf.constant(inputs_list)
|
||||
tfo = tf_model(tf_inputs, training=False) # build the network
|
||||
|
||||
symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
|
||||
weight_value_tuples = []
|
||||
for symbolic_weight in symbolic_weights:
|
||||
name = symbolic_weight.name
|
||||
name = name.replace('cls_mlm', 'cls') # We had to split this layer in two in the TF model to be
|
||||
name = name.replace('cls_nsp', 'cls') # able to do transfer learning (Keras only allow to remove full layers)
|
||||
name = name.replace(':0', '')
|
||||
name = name.replace('layer_', 'layer/')
|
||||
name = name.split('/')
|
||||
name = name[1:]
|
||||
|
||||
transpose = bool(name[-1] == 'kernel')
|
||||
if name[-1] == 'kernel' or name[-1] == 'embeddings':
|
||||
name[-1] = 'weight'
|
||||
|
||||
name = '.'.join(name)
|
||||
assert name in state_dict
|
||||
array = state_dict[name].numpy()
|
||||
|
||||
if transpose:
|
||||
array = numpy.transpose(array)
|
||||
|
||||
try:
|
||||
assert list(symbolic_weight.shape) == list(array.shape)
|
||||
except AssertionError as e:
|
||||
e.args += (symbolic_weight.shape, array.shape)
|
||||
raise e
|
||||
|
||||
logger.info("Initialize TF weight {}".format(symbolic_weight.name))
|
||||
|
||||
weight_value_tuples.append((symbolic_weight, array))
|
||||
|
||||
K.batch_set_value(weight_value_tuples)
|
||||
|
||||
tfo = tf_model(tf_inputs, training=False) # Make sure restore ops are run
|
||||
return tf_model
|
||||
|
||||
|
||||
def gelu(x):
|
||||
"""Gaussian Error Linear Unit.
|
||||
This is a smoother version of the RELU.
|
||||
Original paper: https://arxiv.org/abs/1606.08415
|
||||
Args:
|
||||
x: float Tensor to perform activation.
|
||||
Returns:
|
||||
`x` with the GELU activation applied.
|
||||
"""
|
||||
cdf = 0.5 * (1.0 + tf.tanh(
|
||||
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
|
||||
return x * cdf
|
||||
|
||||
|
||||
def swish(x):
|
||||
return x * tf.sigmoid(x)
|
||||
|
||||
|
||||
ACT2FN = {"gelu": tf.keras.layers.Activation(gelu),
|
||||
"relu": tf.keras.activations.relu,
|
||||
"swish": tf.keras.layers.Activation(swish)}
|
||||
|
||||
|
||||
class TFBertEmbeddings(tf.keras.layers.Layer):
|
||||
"""Construct the embeddings from word, position and token_type embeddings.
|
||||
"""
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertEmbeddings, self).__init__(**kwargs)
|
||||
self.word_embeddings = tf.keras.layers.Embedding(config.vocab_size, config.hidden_size, name='word_embeddings')
|
||||
self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings, config.hidden_size, name='position_embeddings')
|
||||
self.token_type_embeddings = tf.keras.layers.Embedding(config.type_vocab_size, config.hidden_size, name='token_type_embeddings')
|
||||
|
||||
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||||
# any TensorFlow checkpoint file
|
||||
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
||||
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
input_ids, position_ids, token_type_ids = inputs
|
||||
|
||||
seq_length = tf.shape(input_ids)[1]
|
||||
if position_ids is None:
|
||||
position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
|
||||
if token_type_ids is None:
|
||||
token_type_ids = tf.fill(tf.shape(input_ids), 0)
|
||||
|
||||
words_embeddings = self.word_embeddings(input_ids)
|
||||
position_embeddings = self.position_embeddings(position_ids)
|
||||
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||||
|
||||
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
||||
embeddings = self.LayerNorm(embeddings)
|
||||
if training:
|
||||
embeddings = self.dropout(embeddings)
|
||||
return embeddings
|
||||
|
||||
|
||||
class TFBertSelfAttention(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertSelfAttention, self).__init__(**kwargs)
|
||||
if config.hidden_size % config.num_attention_heads != 0:
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention "
|
||||
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
||||
self.output_attentions = config.output_attentions
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
assert config.hidden_size % config.num_attention_heads == 0
|
||||
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||||
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||||
|
||||
self.query = tf.keras.layers.Dense(self.all_head_size, name='query')
|
||||
self.key = tf.keras.layers.Dense(self.all_head_size, name='key')
|
||||
self.value = tf.keras.layers.Dense(self.all_head_size, name='value')
|
||||
|
||||
self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)
|
||||
|
||||
def transpose_for_scores(self, x, batch_size):
|
||||
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
||||
return tf.transpose(x, perm=[0, 2, 1, 3])
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
hidden_states, attention_mask, head_mask = inputs
|
||||
|
||||
batch_size = tf.shape(hidden_states)[0]
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
mixed_key_layer = self.key(hidden_states)
|
||||
mixed_value_layer = self.value(hidden_states)
|
||||
|
||||
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
||||
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
|
||||
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
|
||||
|
||||
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||||
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) # (batch size, num_heads, seq_len_q, seq_len_k)
|
||||
dk = tf.cast(tf.shape(key_layer)[-1], tf.float32) # scale attention_scores
|
||||
attention_scores = attention_scores / tf.math.sqrt(dk)
|
||||
# Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
|
||||
attention_scores = attention_scores + attention_mask
|
||||
|
||||
# Normalize the attention scores to probabilities.
|
||||
attention_probs = tf.nn.softmax(attention_scores, axis=-1)
|
||||
|
||||
if training:
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs = self.dropout(attention_probs)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attention_probs = attention_probs * head_mask
|
||||
|
||||
context_layer = tf.matmul(attention_probs, value_layer)
|
||||
|
||||
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
|
||||
context_layer = tf.reshape(context_layer,
|
||||
(batch_size, -1, self.all_head_size)) # (batch_size, seq_len_q, all_head_size)
|
||||
|
||||
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
|
||||
return outputs
|
||||
|
||||
|
||||
class TFBertSelfOutput(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertSelfOutput, self).__init__(**kwargs)
|
||||
self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
|
||||
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
||||
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
hidden_states, input_tensor = inputs
|
||||
|
||||
hidden_states = self.dense(hidden_states)
|
||||
if training:
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TFBertAttention(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertAttention, self).__init__(**kwargs)
|
||||
self.self_attention = TFBertSelfAttention(config, name='self')
|
||||
self.dense_output = TFBertSelfOutput(config, name='output')
|
||||
|
||||
def prune_heads(self, heads):
|
||||
raise NotImplementedError
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
input_tensor, attention_mask, head_mask = inputs
|
||||
|
||||
self_outputs = self.self_attention([input_tensor, attention_mask, head_mask], training=training)
|
||||
attention_output = self.dense_output([self_outputs[0], input_tensor], training=training)
|
||||
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||||
return outputs
|
||||
|
||||
|
||||
class TFBertIntermediate(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertIntermediate, self).__init__(**kwargs)
|
||||
self.dense = tf.keras.layers.Dense(config.intermediate_size, name='dense')
|
||||
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
|
||||
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.intermediate_act_fn = config.hidden_act
|
||||
|
||||
def call(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.intermediate_act_fn(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TFBertOutput(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertOutput, self).__init__(**kwargs)
|
||||
self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
|
||||
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
||||
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
hidden_states, input_tensor = inputs
|
||||
|
||||
hidden_states = self.dense(hidden_states)
|
||||
if training:
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TFBertLayer(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertLayer, self).__init__(**kwargs)
|
||||
self.attention = TFBertAttention(config, name='attention')
|
||||
self.intermediate = TFBertIntermediate(config, name='intermediate')
|
||||
self.bert_output = TFBertOutput(config, name='output')
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
hidden_states, attention_mask, head_mask = inputs
|
||||
|
||||
attention_outputs = self.attention([hidden_states, attention_mask, head_mask], training=training)
|
||||
attention_output = attention_outputs[0]
|
||||
intermediate_output = self.intermediate(attention_output)
|
||||
layer_output = self.bert_output([intermediate_output, attention_output], training=training)
|
||||
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
|
||||
return outputs
|
||||
|
||||
|
||||
class TFBertEncoder(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertEncoder, self).__init__(**kwargs)
|
||||
self.output_attentions = config.output_attentions
|
||||
self.output_hidden_states = config.output_hidden_states
|
||||
self.layer = [TFBertLayer(config, name='layer_{}'.format(i)) for i in range(config.num_hidden_layers)]
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
hidden_states, attention_mask, head_mask = inputs
|
||||
|
||||
all_hidden_states = ()
|
||||
all_attentions = ()
|
||||
for i, layer_module in enumerate(self.layer):
|
||||
if self.output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer_outputs = layer_module([hidden_states, attention_mask, head_mask[i]], training=training)
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if self.output_attentions:
|
||||
all_attentions = all_attentions + (layer_outputs[1],)
|
||||
|
||||
# Add last layer
|
||||
if self.output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
outputs = (hidden_states,)
|
||||
if self.output_hidden_states:
|
||||
outputs = outputs + (all_hidden_states,)
|
||||
if self.output_attentions:
|
||||
outputs = outputs + (all_attentions,)
|
||||
return outputs # outputs, (hidden states), (attentions)
|
||||
|
||||
|
||||
class TFBertPooler(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertPooler, self).__init__(**kwargs)
|
||||
self.dense = tf.keras.layers.Dense(config.hidden_size, activation='tanh', name='dense')
|
||||
|
||||
def call(self, hidden_states):
|
||||
# We "pool" the model by simply taking the hidden state corresponding
|
||||
# to the first token.
|
||||
first_token_tensor = hidden_states[:, 0]
|
||||
pooled_output = self.dense(first_token_tensor)
|
||||
return pooled_output
|
||||
|
||||
|
||||
class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertPredictionHeadTransform, self).__init__(**kwargs)
|
||||
self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
|
||||
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
||||
|
||||
def call(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TFBertLMPredictionHead(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertLMPredictionHead, self).__init__(**kwargs)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.transform = TFBertPredictionHeadTransform(config, name='transform')
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = tf.keras.layers.Dense(config.vocab_size, use_bias=False, name='decoder')
|
||||
|
||||
def build(self, input_shape):
|
||||
self.bias = self.add_weight(shape=(self.vocab_size,),
|
||||
initializer='zeros',
|
||||
trainable=True,
|
||||
name='bias')
|
||||
|
||||
def call(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states) + self.bias
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TFBertMLMHead(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertMLMHead, self).__init__(**kwargs)
|
||||
self.predictions = TFBertLMPredictionHead(config, name='predictions')
|
||||
|
||||
def call(self, sequence_output):
|
||||
prediction_scores = self.predictions(sequence_output)
|
||||
return prediction_scores
|
||||
|
||||
|
||||
class TFBertNSPHead(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertNSPHead, self).__init__(**kwargs)
|
||||
self.seq_relationship = tf.keras.layers.Dense(2, name='seq_relationship')
|
||||
|
||||
def call(self, pooled_output):
|
||||
seq_relationship_score = self.seq_relationship(pooled_output)
|
||||
return seq_relationship_score
|
||||
|
||||
|
||||
class TFBertMainLayer(tf.keras.layers.Layer):
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFBertMainLayer, self).__init__(**kwargs)
|
||||
self.num_hidden_layers = config.num_hidden_layers
|
||||
|
||||
self.embeddings = TFBertEmbeddings(config, name='embeddings')
|
||||
self.encoder = TFBertEncoder(config, name='encoder')
|
||||
self.pooler = TFBertPooler(config, name='pooler')
|
||||
|
||||
# self.apply(self.init_weights) # TODO check weights initialization
|
||||
|
||||
def _resize_token_embeddings(self, new_num_tokens):
|
||||
raise NotImplementedError
|
||||
|
||||
def _prune_heads(self, heads_to_prune):
|
||||
""" Prunes heads of the model.
|
||||
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
||||
See base class PreTrainedModel
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
if not isinstance(inputs, (dict, tuple, list)):
|
||||
input_ids = inputs
|
||||
attention_mask, head_mask, position_ids, token_type_ids = None, None, None, None
|
||||
elif isinstance(inputs, (tuple, list)):
|
||||
input_ids = inputs[0]
|
||||
attention_mask = inputs[1] if len(inputs) > 1 else None
|
||||
token_type_ids = inputs[2] if len(inputs) > 2 else None
|
||||
position_ids = inputs[3] if len(inputs) > 3 else None
|
||||
head_mask = inputs[4] if len(inputs) > 4 else None
|
||||
assert len(inputs) <= 5, "Too many inputs."
|
||||
else:
|
||||
input_ids = inputs.pop('input_ids')
|
||||
attention_mask = inputs.pop('attention_mask', None)
|
||||
token_type_ids = inputs.pop('token_type_ids', None)
|
||||
position_ids = inputs.pop('position_ids', None)
|
||||
head_mask = inputs.pop('head_mask', None)
|
||||
assert len(inputs) == 0, "Unexpected inputs detected: {}. Check inputs dict key names.".format(list(inputs.keys()))
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = tf.fill(tf.shape(input_ids), 1)
|
||||
if token_type_ids is None:
|
||||
token_type_ids = tf.fill(tf.shape(input_ids), 0)
|
||||
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||
# this attention mask is more simple than the triangular masking of causal attention
|
||||
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||
extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
|
||||
extended_attention_mask = tf.cast(extended_attention_mask, tf.float32)
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
if not head_mask is None:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
head_mask = [None] * self.num_hidden_layers
|
||||
# head_mask = tf.constant([0] * self.num_hidden_layers)
|
||||
|
||||
embedding_output = self.embeddings([input_ids, position_ids, token_type_ids], training=training)
|
||||
encoder_outputs = self.encoder([embedding_output, extended_attention_mask, head_mask], training=training)
|
||||
|
||||
sequence_output = encoder_outputs[0]
|
||||
pooled_output = self.pooler(sequence_output)
|
||||
|
||||
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here
|
||||
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
|
||||
|
||||
class TFBertPreTrainedModel(TFPreTrainedModel):
|
||||
""" An abstract class to handle weights initialization and
|
||||
a simple interface for dowloading and loading pretrained models.
|
||||
"""
|
||||
config_class = BertConfig
|
||||
pretrained_model_archive_map = TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
load_pt_weights = load_pt_weights_in_bert
|
||||
base_model_prefix = "bert"
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super(TFBertPreTrainedModel, self).__init__(*inputs, **kwargs)
|
||||
|
||||
def init_weights(self, module):
|
||||
""" Initialize the weights.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
BERT_START_DOCSTRING = r""" The BERT model was proposed in
|
||||
`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
|
||||
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
|
||||
pre-trained using a combination of masked language modeling objective and next sentence prediction
|
||||
on a large corpus comprising the Toronto Book Corpus and Wikipedia.
|
||||
|
||||
This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
|
||||
refer to the TF 2.0 documentation for all matter related to general usage and behavior.
|
||||
|
||||
.. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
|
||||
https://arxiv.org/abs/1810.04805
|
||||
|
||||
.. _`tf.keras.Model`:
|
||||
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model
|
||||
|
||||
Important note on the model inputs:
|
||||
The inputs of the TF 2.0 models are slightly different from the PyTorch ones since
|
||||
TF 2.0 Keras doesn't accept named arguments with defaults values for input Tensor.
|
||||
More precisely, input Tensors are gathered in the first arguments of the model call function: `model(inputs)`.
|
||||
There are three possibilities to gather and feed the inputs to the model:
|
||||
|
||||
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
|
||||
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
||||
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
||||
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
|
||||
`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
|
||||
|
||||
Parameters:
|
||||
config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
||||
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
|
||||
"""
|
||||
|
||||
BERT_INPUTS_DOCSTRING = r"""
|
||||
Inputs:
|
||||
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:
|
||||
|
||||
(a) For sequence pairs:
|
||||
|
||||
``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
|
||||
|
||||
``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1``
|
||||
|
||||
(b) For single sequences:
|
||||
|
||||
``tokens: [CLS] the dog is hairy . [SEP]``
|
||||
|
||||
``token_type_ids: 0 0 0 0 0 0 0``
|
||||
|
||||
Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
|
||||
the right rather than the left.
|
||||
|
||||
Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
|
||||
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
|
||||
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
|
||||
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Mask to avoid performing attention on padding token indices.
|
||||
Mask values selected in ``[0, 1]``:
|
||||
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
||||
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Segment token indices to indicate first and second portions of the inputs.
|
||||
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
|
||||
corresponds to a `sentence B` token
|
||||
(see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
|
||||
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Indices of positions of each input sequence tokens in the position embeddings.
|
||||
Selected in the range ``[0, config.max_position_embeddings - 1]``.
|
||||
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
||||
Mask to nullify selected heads of the self-attention modules.
|
||||
Mask values selected in ``[0, 1]``:
|
||||
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
||||
"""
|
||||
|
||||
@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
|
||||
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
||||
class TFBertModel(TFBertPreTrainedModel):
|
||||
r"""
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
|
||||
Last layer hidden-state of the first token of the sequence (classification token)
|
||||
further processed by a Linear layer and a Tanh activation function. The Linear
|
||||
layer weights are trained from the next sentence prediction (classification)
|
||||
objective during Bert pretraining. This output is usually *not* a good summary
|
||||
of the semantic content of the input, you're often better with averaging or pooling
|
||||
the sequence of hidden-states for the whole input sequence.
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
|
||||
Examples::
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertModel.from_pretrained('bert-base-uncased')
|
||||
input_ids = tf.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
super(TFBertModel, self).__init__(config)
|
||||
self.bert = TFBertMainLayer(config, name='bert')
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
outputs = self.bert(inputs, training=training)
|
||||
return outputs
|
||||
|
||||
|
||||
@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
|
||||
a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
|
||||
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
||||
class TFBertForPreTraining(TFBertPreTrainedModel):
|
||||
r"""
|
||||
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Labels for computing the masked language modeling loss.
|
||||
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
|
||||
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
|
||||
in ``[0, ..., config.vocab_size]``
|
||||
**next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
||||
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
|
||||
Indices should be in ``[0, 1]``.
|
||||
``0`` indicates sequence B is a continuation of sequence A,
|
||||
``1`` indicates sequence B is a random sequence.
|
||||
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
||||
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
|
||||
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
**seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
|
||||
Examples::
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForPreTraining.from_pretrained('bert-base-uncased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores, seq_relationship_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
super(TFBertForPreTraining, self).__init__(config)
|
||||
|
||||
self.bert = TFBertMainLayer(config, name='bert')
|
||||
self.cls_mlm = TFBertMLMHead(config, name='cls_mlm')
|
||||
self.cls_nsp = TFBertNSPHead(config, name='cls_nsp')
|
||||
|
||||
# self.apply(self.init_weights) # TODO check added weights initialization
|
||||
self.tie_weights()
|
||||
|
||||
def tie_weights(self):
|
||||
""" Make sure we are sharing the input and output embeddings.
|
||||
"""
|
||||
pass # TODO add weights tying
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
outputs = self.bert(inputs, training=training)
|
||||
|
||||
sequence_output, pooled_output = outputs[:2]
|
||||
prediction_scores = self.cls_mlm(sequence_output)
|
||||
seq_relationship_score = self.cls_nsp(pooled_output)
|
||||
|
||||
outputs = (prediction_scores, seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here
|
||||
|
||||
# if masked_lm_labels is not None and next_sentence_label is not None:
|
||||
# loss_fct = CrossEntropyLoss(ignore_index=-1)
|
||||
# masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
|
||||
# next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
||||
# total_loss = masked_lm_loss + next_sentence_loss
|
||||
# outputs = (total_loss,) + outputs
|
||||
# TODO add example with losses using model.compile and a dictionary of losses (give names to the output layers)
|
||||
|
||||
return outputs # prediction_scores, seq_relationship_score, (hidden_states), (attentions)
|
||||
|
||||
|
||||
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
|
||||
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
||||
class TFBertForMaskedLM(TFBertPreTrainedModel):
|
||||
r"""
|
||||
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Labels for computing the masked language modeling loss.
|
||||
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
|
||||
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
|
||||
in ``[0, ..., config.vocab_size]``
|
||||
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
||||
Masked language modeling loss.
|
||||
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
|
||||
Examples::
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForMaskedLM.from_pretrained('bert-base-uncased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, masked_lm_labels=input_ids)
|
||||
loss, prediction_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
super(TFBertForMaskedLM, self).__init__(config)
|
||||
|
||||
self.bert = TFBertMainLayer(config, name='bert')
|
||||
self.cls_mlm = TFBertMLMHead(config, name='cls_mlm')
|
||||
|
||||
# self.apply(self.init_weights)
|
||||
self.tie_weights()
|
||||
|
||||
def tie_weights(self):
|
||||
""" Make sure we are sharing the input and output embeddings.
|
||||
"""
|
||||
pass # TODO add weights tying
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
outputs = self.bert(inputs, training=training)
|
||||
|
||||
sequence_output = outputs[0]
|
||||
prediction_scores = self.cls_mlm(sequence_output)
|
||||
|
||||
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
|
||||
# if masked_lm_labels is not None:
|
||||
# loss_fct = CrossEntropyLoss(ignore_index=-1)
|
||||
# masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
|
||||
# outputs = (masked_lm_loss,) + outputs
|
||||
# TODO example with losses
|
||||
|
||||
return outputs # prediction_scores, (hidden_states), (attentions)
|
||||
|
||||
|
||||
@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
|
||||
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
||||
class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
|
||||
r"""
|
||||
**next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
||||
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
|
||||
Indices should be in ``[0, 1]``.
|
||||
``0`` indicates sequence B is a continuation of sequence A,
|
||||
``1`` indicates sequence B is a random sequence.
|
||||
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
||||
Next sequence prediction (classification) loss.
|
||||
**seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
|
||||
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
|
||||
Examples::
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = TFBertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
seq_relationship_scores = outputs[0]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
super(TFBertForNextSentencePrediction, self).__init__(config)
|
||||
|
||||
self.bert = TFBertMainLayer(config, name='bert')
|
||||
self.cls_nsp = TFBertNSPHead(config, name='cls_nsp')
|
||||
|
||||
# self.apply(self.init_weights)
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
outputs = self.bert(inputs, training=training)
|
||||
|
||||
pooled_output = outputs[1]
|
||||
seq_relationship_score = self.cls_nsp(pooled_output)
|
||||
|
||||
outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here
|
||||
# if next_sentence_label is not None:
|
||||
# loss_fct = CrossEntropyLoss(ignore_index=-1)
|
||||
# next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
||||
# outputs = (next_sentence_loss,) + outputs
|
||||
|
||||
return outputs # seq_relationship_score, (hidden_states), (attentions)
|
255
pytorch_transformers/modeling_tf_utils.py
Normal file
255
pytorch_transformers/modeling_tf_utils.py
Normal file
@ -0,0 +1,255 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""TF general model utils."""
|
||||
|
||||
from __future__ import (absolute_import, division, print_function,
|
||||
unicode_literals)
|
||||
|
||||
import logging
|
||||
import os
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from .configuration_utils import PretrainedConfig
|
||||
from .file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TFPreTrainedModel(tf.keras.Model):
|
||||
r""" Base class for all TF models.
|
||||
|
||||
:class:`~pytorch_transformers.TFPreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
|
||||
as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.
|
||||
|
||||
Class attributes (overridden by derived classes):
|
||||
- ``config_class``: a class derived from :class:`~pytorch_transformers.PretrainedConfig` to use as configuration class for this model architecture.
|
||||
- ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
|
||||
- ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:
|
||||
|
||||
- ``model``: an instance of the relevant subclass of :class:`~pytorch_transformers.PreTrainedModel`,
|
||||
- ``config``: an instance of the relevant subclass of :class:`~pytorch_transformers.PretrainedConfig`,
|
||||
- ``path``: a path (string) to the TensorFlow checkpoint.
|
||||
|
||||
- ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
|
||||
"""
|
||||
config_class = None
|
||||
pretrained_model_archive_map = {}
|
||||
load_pt_weights = lambda model, config, path: None
|
||||
base_model_prefix = ""
|
||||
|
||||
def __init__(self, config, *inputs, **kwargs):
|
||||
super(TFPreTrainedModel, self).__init__()
|
||||
if not isinstance(config, PretrainedConfig):
|
||||
raise ValueError(
|
||||
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
|
||||
"To create a model from a pretrained model use "
|
||||
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
||||
self.__class__.__name__, self.__class__.__name__
|
||||
))
|
||||
# Save config in model
|
||||
self.config = config
|
||||
|
||||
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
|
||||
""" Build a resized Embedding Module from a provided token Embedding Module.
|
||||
Increasing the size will add newly initialized vectors at the end
|
||||
Reducing the size will remove vectors from the end
|
||||
|
||||
Args:
|
||||
new_num_tokens: (`optional`) int
|
||||
New number of tokens in the embedding matrix.
|
||||
Increasing the size will add newly initialized vectors at the end
|
||||
Reducing the size will remove vectors from the end
|
||||
If not provided or None: return the provided token Embedding Module.
|
||||
Return: ``torch.nn.Embeddings``
|
||||
Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _tie_or_clone_weights(self, first_module, second_module):
|
||||
""" Tie or clone module weights depending of weither we are using TorchScript or not
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def resize_token_embeddings(self, new_num_tokens=None):
|
||||
""" Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
|
||||
Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
||||
|
||||
Arguments:
|
||||
|
||||
new_num_tokens: (`optional`) int:
|
||||
New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end.
|
||||
If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model.
|
||||
|
||||
Return: ``torch.nn.Embeddings``
|
||||
Pointer to the input tokens Embeddings Module of the model
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def prune_heads(self, heads_to_prune):
|
||||
""" Prunes heads of the base model.
|
||||
|
||||
Arguments:
|
||||
|
||||
heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def save_pretrained(self, save_directory):
|
||||
""" Save a model and its configuration file to a directory, so that it
|
||||
can be re-loaded using the `:func:`~pytorch_transformers.PreTrainedModel.from_pretrained`` class method.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
||||
r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.
|
||||
|
||||
The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
|
||||
To train the model, you should first set it back in training mode with ``model.train()``
|
||||
|
||||
The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
|
||||
It is up to you to train those weights with a downstream fine-tuning task.
|
||||
|
||||
The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `PyTorch state_dict save file` (e.g. `./pt_model/pytorch_model.bin`). In this case, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
|
||||
|
||||
model_args: (`optional`) Sequence of positional arguments:
|
||||
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
|
||||
|
||||
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
|
||||
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
|
||||
|
||||
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
|
||||
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
|
||||
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
|
||||
|
||||
from_pt: (`optional`) boolean, default False:
|
||||
Load the model weights from a PyTorch state_dict save file (see docstring of pretrained_model_name_or_path argument).
|
||||
|
||||
cache_dir: (`optional`) string:
|
||||
Path to a directory in which a downloaded pre-trained model
|
||||
configuration should be cached if the standard cache should not be used.
|
||||
|
||||
force_download: (`optional`) boolean, default False:
|
||||
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
|
||||
|
||||
proxies: (`optional`) dict, default None:
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
|
||||
The proxies are used on each request.
|
||||
|
||||
output_loading_info: (`optional`) boolean:
|
||||
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
|
||||
|
||||
kwargs: (`optional`) Remaining dictionary of keyword arguments:
|
||||
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
|
||||
|
||||
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
|
||||
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
|
||||
|
||||
Examples::
|
||||
|
||||
model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
|
||||
model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
||||
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
|
||||
assert model.config.output_attention == True
|
||||
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
||||
config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
|
||||
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_pt=True, config=config)
|
||||
|
||||
"""
|
||||
config = kwargs.pop('config', None)
|
||||
cache_dir = kwargs.pop('cache_dir', None)
|
||||
from_pt = kwargs.pop('from_pt', False)
|
||||
force_download = kwargs.pop('force_download', False)
|
||||
proxies = kwargs.pop('proxies', None)
|
||||
output_loading_info = kwargs.pop('output_loading_info', False)
|
||||
|
||||
# Load config
|
||||
if config is None:
|
||||
config, model_kwargs = cls.config_class.from_pretrained(
|
||||
pretrained_model_name_or_path, *model_args,
|
||||
cache_dir=cache_dir, return_unused_kwargs=True,
|
||||
force_download=force_download,
|
||||
**kwargs
|
||||
)
|
||||
else:
|
||||
model_kwargs = kwargs
|
||||
|
||||
# Load model
|
||||
if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
|
||||
archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
|
||||
elif os.path.isdir(pretrained_model_name_or_path):
|
||||
if from_pt:
|
||||
# Load from a PyTorch checkpoint
|
||||
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
||||
else:
|
||||
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME)
|
||||
else:
|
||||
archive_file = pretrained_model_name_or_path
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
|
||||
logger.error(
|
||||
"Couldn't reach server at '{}' to download pretrained weights.".format(
|
||||
archive_file))
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find any file "
|
||||
"associated to this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(cls.pretrained_model_archive_map.keys()),
|
||||
archive_file))
|
||||
return None
|
||||
if resolved_archive_file == archive_file:
|
||||
logger.info("loading weights file {}".format(archive_file))
|
||||
else:
|
||||
logger.info("loading weights file {} from cache at {}".format(
|
||||
archive_file, resolved_archive_file))
|
||||
|
||||
# Instantiate model.
|
||||
model = cls(config, *model_args, **model_kwargs)
|
||||
|
||||
if from_pt:
|
||||
# Load from a PyTorch checkpoint
|
||||
return cls.load_pt_weights(model, config, resolved_archive_file)
|
||||
|
||||
inputs = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
|
||||
ret = model(inputs, training=False) # build the network with dummy inputs
|
||||
|
||||
# 'by_name' allow us to do transfer learning by skipping/adding layers
|
||||
# see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
|
||||
model.load_weights(resolved_archive_file, by_name=True)
|
||||
|
||||
ret = model(inputs, training=False) # Make sure restore ops are run
|
||||
|
||||
# if hasattr(model, 'tie_weights'):
|
||||
# model.tie_weights() # TODO make sure word embedding weights are still tied
|
||||
|
||||
if output_loading_info:
|
||||
loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
|
||||
return model, loading_info
|
||||
|
||||
return model
|
308
pytorch_transformers/tests/modeling_tf_common_test.py
Normal file
308
pytorch_transformers/tests/modeling_tf_common_test.py
Normal file
@ -0,0 +1,308 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2019 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import copy
|
||||
import os
|
||||
import shutil
|
||||
import json
|
||||
import random
|
||||
import uuid
|
||||
|
||||
import unittest
|
||||
import logging
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from pytorch_transformers import TFPreTrainedModel
|
||||
# from pytorch_transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
|
||||
def _config_zero_init(config):
|
||||
configs_no_init = copy.deepcopy(config)
|
||||
for key in configs_no_init.__dict__.keys():
|
||||
if '_range' in key or '_std' in key:
|
||||
setattr(configs_no_init, key, 0.0)
|
||||
return configs_no_init
|
||||
|
||||
class TFCommonTestCases:
|
||||
|
||||
class TFCommonModelTester(unittest.TestCase):
|
||||
|
||||
model_tester = None
|
||||
all_model_classes = ()
|
||||
test_torchscript = True
|
||||
test_pruning = True
|
||||
test_resize_embeddings = True
|
||||
|
||||
def test_initialization(self):
|
||||
pass
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# configs_no_init = _config_zero_init(config)
|
||||
# for model_class in self.all_model_classes:
|
||||
# model = model_class(config=configs_no_init)
|
||||
# for name, param in model.named_parameters():
|
||||
# if param.requires_grad:
|
||||
# self.assertIn(param.data.mean().item(), [0.0, 1.0],
|
||||
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
|
||||
|
||||
|
||||
def test_attention_outputs(self):
|
||||
pass
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# config.output_attentions = True
|
||||
# config.output_hidden_states = False
|
||||
# model = model_class(config)
|
||||
# model.eval()
|
||||
# outputs = model(**inputs_dict)
|
||||
# attentions = outputs[-1]
|
||||
# self.assertEqual(model.config.output_attentions, True)
|
||||
# self.assertEqual(model.config.output_hidden_states, False)
|
||||
# self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
||||
# self.assertListEqual(
|
||||
# list(attentions[0].shape[-3:]),
|
||||
# [self.model_tester.num_attention_heads,
|
||||
# self.model_tester.seq_length,
|
||||
# self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])
|
||||
# out_len = len(outputs)
|
||||
|
||||
# # Check attention is always last and order is fine
|
||||
# config.output_attentions = True
|
||||
# config.output_hidden_states = True
|
||||
# model = model_class(config)
|
||||
# model.eval()
|
||||
# outputs = model(**inputs_dict)
|
||||
# self.assertEqual(out_len+1, len(outputs))
|
||||
# self.assertEqual(model.config.output_attentions, True)
|
||||
# self.assertEqual(model.config.output_hidden_states, True)
|
||||
|
||||
# attentions = outputs[-1]
|
||||
# self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
||||
# self.assertListEqual(
|
||||
# list(attentions[0].shape[-3:]),
|
||||
# [self.model_tester.num_attention_heads,
|
||||
# self.model_tester.seq_length,
|
||||
# self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])
|
||||
|
||||
|
||||
def test_headmasking(self):
|
||||
pass
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# config.output_attentions = True
|
||||
# config.output_hidden_states = True
|
||||
# configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
||||
# for model_class in self.all_model_classes:
|
||||
# model = model_class(config=configs_no_init)
|
||||
# model.eval()
|
||||
|
||||
# # Prepare head_mask
|
||||
# # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
|
||||
# head_mask = torch.ones(self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads)
|
||||
# head_mask[0, 0] = 0
|
||||
# head_mask[-1, :-1] = 0
|
||||
# head_mask.requires_grad_(requires_grad=True)
|
||||
# inputs = inputs_dict.copy()
|
||||
# inputs['head_mask'] = head_mask
|
||||
|
||||
# outputs = model(**inputs)
|
||||
|
||||
# # Test that we can get a gradient back for importance score computation
|
||||
# output = sum(t.sum() for t in outputs[0])
|
||||
# output = output.sum()
|
||||
# output.backward()
|
||||
# multihead_outputs = head_mask.grad
|
||||
|
||||
# attentions = outputs[-1]
|
||||
# hidden_states = outputs[-2]
|
||||
|
||||
# # Remove Nan
|
||||
|
||||
# self.assertIsNotNone(multihead_outputs)
|
||||
# self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
|
||||
# self.assertAlmostEqual(
|
||||
# attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertNotEqual(
|
||||
# attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertNotEqual(
|
||||
# attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertAlmostEqual(
|
||||
# attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
|
||||
# self.assertNotEqual(
|
||||
# attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
|
||||
|
||||
|
||||
def test_head_pruning(self):
|
||||
pass
|
||||
# if not self.test_pruning:
|
||||
# return
|
||||
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# config.output_attentions = True
|
||||
# config.output_hidden_states = False
|
||||
# model = model_class(config=config)
|
||||
# model.eval()
|
||||
# heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
|
||||
# -1: [0]}
|
||||
# model.prune_heads(heads_to_prune)
|
||||
# outputs = model(**inputs_dict)
|
||||
|
||||
# attentions = outputs[-1]
|
||||
|
||||
# self.assertEqual(
|
||||
# attentions[0].shape[-3], 1)
|
||||
# self.assertEqual(
|
||||
# attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
||||
# self.assertEqual(
|
||||
# attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
||||
|
||||
|
||||
def test_hidden_states_output(self):
|
||||
pass
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# config.output_hidden_states = True
|
||||
# config.output_attentions = False
|
||||
# model = model_class(config)
|
||||
# model.eval()
|
||||
# outputs = model(**inputs_dict)
|
||||
# hidden_states = outputs[-1]
|
||||
# self.assertEqual(model.config.output_attentions, False)
|
||||
# self.assertEqual(model.config.output_hidden_states, True)
|
||||
# self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
|
||||
# self.assertListEqual(
|
||||
# list(hidden_states[0].shape[-2:]),
|
||||
# [self.model_tester.seq_length, self.model_tester.hidden_size])
|
||||
|
||||
|
||||
def test_resize_tokens_embeddings(self):
|
||||
pass
|
||||
# original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
# if not self.test_resize_embeddings:
|
||||
# return
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# config = copy.deepcopy(original_config)
|
||||
# model = model_class(config)
|
||||
|
||||
# model_vocab_size = config.vocab_size
|
||||
# # Retrieve the embeddings and clone theme
|
||||
# model_embed = model.resize_token_embeddings(model_vocab_size)
|
||||
# cloned_embeddings = model_embed.weight.clone()
|
||||
|
||||
# # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
||||
# model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
||||
# self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
||||
# # Check that it actually resizes the embeddings matrix
|
||||
# self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
||||
|
||||
# # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
||||
# model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
||||
# self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
|
||||
# # Check that it actually resizes the embeddings matrix
|
||||
# self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
||||
|
||||
# # Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
||||
# models_equal = True
|
||||
# for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
||||
# if p1.data.ne(p2.data).sum() > 0:
|
||||
# models_equal = False
|
||||
|
||||
# self.assertTrue(models_equal)
|
||||
|
||||
|
||||
def test_tie_model_weights(self):
|
||||
pass
|
||||
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# def check_same_values(layer_1, layer_2):
|
||||
# equal = True
|
||||
# for p1, p2 in zip(layer_1.weight, layer_2.weight):
|
||||
# if p1.data.ne(p2.data).sum() > 0:
|
||||
# equal = False
|
||||
# return equal
|
||||
|
||||
# for model_class in self.all_model_classes:
|
||||
# if not hasattr(model_class, 'tie_weights'):
|
||||
# continue
|
||||
|
||||
# config.torchscript = True
|
||||
# model_not_tied = model_class(config)
|
||||
# params_not_tied = list(model_not_tied.parameters())
|
||||
|
||||
# config_tied = copy.deepcopy(config)
|
||||
# config_tied.torchscript = False
|
||||
# model_tied = model_class(config_tied)
|
||||
# params_tied = list(model_tied.parameters())
|
||||
|
||||
# # Check that the embedding layer and decoding layer are the same in size and in value
|
||||
# self.assertGreater(len(params_not_tied), len(params_tied))
|
||||
|
||||
# # Check that after resize they remain tied.
|
||||
# model_tied.resize_token_embeddings(config.vocab_size + 10)
|
||||
# params_tied_2 = list(model_tied.parameters())
|
||||
# self.assertGreater(len(params_not_tied), len(params_tied))
|
||||
# self.assertEqual(len(params_tied_2), len(params_tied))
|
||||
|
||||
|
||||
def ids_tensor(shape, vocab_size, rng=None, name=None):
|
||||
"""Creates a random int32 tensor of the shape within the vocab size."""
|
||||
if rng is None:
|
||||
rng = random.Random()
|
||||
|
||||
total_dims = 1
|
||||
for dim in shape:
|
||||
total_dims *= dim
|
||||
|
||||
values = []
|
||||
for _ in range(total_dims):
|
||||
values.append(rng.randint(0, vocab_size - 1))
|
||||
|
||||
return tf.constant(values, shape=shape)
|
||||
|
||||
|
||||
class TFModelUtilsTest(unittest.TestCase):
|
||||
def test_model_from_pretrained(self):
|
||||
pass
|
||||
# logging.basicConfig(level=logging.INFO)
|
||||
# for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
||||
# config = BertConfig.from_pretrained(model_name)
|
||||
# self.assertIsNotNone(config)
|
||||
# self.assertIsInstance(config, PretrainedConfig)
|
||||
|
||||
# model = BertModel.from_pretrained(model_name)
|
||||
# model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
|
||||
# self.assertIsNotNone(model)
|
||||
# self.assertIsInstance(model, PreTrainedModel)
|
||||
# for value in loading_info.values():
|
||||
# self.assertEqual(len(value), 0)
|
||||
|
||||
# config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
||||
# model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
||||
# self.assertEqual(model.config.output_attentions, True)
|
||||
# self.assertEqual(model.config.output_hidden_states, True)
|
||||
# self.assertEqual(model.config, config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
327
pytorch_transformers/tests/modeling_tf_test.py
Normal file
327
pytorch_transformers/tests/modeling_tf_test.py
Normal file
@ -0,0 +1,327 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from pytorch_transformers import (BertConfig)
|
||||
from pytorch_transformers.modeling_tf_bert import TFBertModel, TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
|
||||
from .configuration_common_test import ConfigTester
|
||||
|
||||
|
||||
class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
|
||||
|
||||
all_model_classes = (TFBertModel,)
|
||||
# BertForMaskedLM, BertForNextSentencePrediction,
|
||||
# BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification,
|
||||
# BertForTokenClassification)
|
||||
|
||||
class TFBertModelTester(object):
|
||||
|
||||
def __init__(self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
num_choices=4,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_labels = num_labels
|
||||
self.num_choices = num_choices
|
||||
self.scope = scope
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = BertConfig(
|
||||
vocab_size_or_config_json_file=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range)
|
||||
|
||||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def check_loss_output(self, result):
|
||||
self.parent.assertListEqual(
|
||||
list(result["loss"].size()),
|
||||
[])
|
||||
|
||||
def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = TFBertModel(config=config)
|
||||
# model.eval()
|
||||
inputs = {'input_ids': input_ids,
|
||||
'attention_mask': input_mask,
|
||||
'token_type_ids': token_type_ids}
|
||||
sequence_output, pooled_output = model(inputs)
|
||||
|
||||
inputs = [input_ids, input_mask]
|
||||
sequence_output, pooled_output = model(inputs)
|
||||
|
||||
sequence_output, pooled_output = model(input_ids)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output.numpy(),
|
||||
"pooled_output": pooled_output.numpy(),
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["sequence_output"].shape),
|
||||
[self.batch_size, self.seq_length, self.hidden_size])
|
||||
self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
|
||||
|
||||
|
||||
def create_and_check_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
pass
|
||||
# model = BertForMaskedLM(config=config)
|
||||
# model.eval()
|
||||
# loss, prediction_scores = model(input_ids, token_type_ids, input_mask, token_labels)
|
||||
# result = {
|
||||
# "loss": loss,
|
||||
# "prediction_scores": prediction_scores,
|
||||
# }
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["prediction_scores"].size()),
|
||||
# [self.batch_size, self.seq_length, self.vocab_size])
|
||||
# self.check_loss_output(result)
|
||||
|
||||
|
||||
def create_and_check_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
pass
|
||||
# model = BertForNextSentencePrediction(config=config)
|
||||
# model.eval()
|
||||
# loss, seq_relationship_score = model(input_ids, token_type_ids, input_mask, sequence_labels)
|
||||
# result = {
|
||||
# "loss": loss,
|
||||
# "seq_relationship_score": seq_relationship_score,
|
||||
# }
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["seq_relationship_score"].size()),
|
||||
# [self.batch_size, 2])
|
||||
# self.check_loss_output(result)
|
||||
|
||||
|
||||
def create_and_check_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
pass
|
||||
# model = BertForPreTraining(config=config)
|
||||
# model.eval()
|
||||
# loss, prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels)
|
||||
# result = {
|
||||
# "loss": loss,
|
||||
# "prediction_scores": prediction_scores,
|
||||
# "seq_relationship_score": seq_relationship_score,
|
||||
# }
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["prediction_scores"].size()),
|
||||
# [self.batch_size, self.seq_length, self.vocab_size])
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["seq_relationship_score"].size()),
|
||||
# [self.batch_size, 2])
|
||||
# self.check_loss_output(result)
|
||||
|
||||
|
||||
def create_and_check_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
pass
|
||||
# model = BertForQuestionAnswering(config=config)
|
||||
# model.eval()
|
||||
# loss, start_logits, end_logits = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels)
|
||||
# result = {
|
||||
# "loss": loss,
|
||||
# "start_logits": start_logits,
|
||||
# "end_logits": end_logits,
|
||||
# }
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["start_logits"].size()),
|
||||
# [self.batch_size, self.seq_length])
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["end_logits"].size()),
|
||||
# [self.batch_size, self.seq_length])
|
||||
# self.check_loss_output(result)
|
||||
|
||||
|
||||
def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
pass
|
||||
# config.num_labels = self.num_labels
|
||||
# model = BertForSequenceClassification(config)
|
||||
# model.eval()
|
||||
# loss, logits = model(input_ids, token_type_ids, input_mask, sequence_labels)
|
||||
# result = {
|
||||
# "loss": loss,
|
||||
# "logits": logits,
|
||||
# }
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["logits"].size()),
|
||||
# [self.batch_size, self.num_labels])
|
||||
# self.check_loss_output(result)
|
||||
|
||||
|
||||
def create_and_check_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
pass
|
||||
# config.num_labels = self.num_labels
|
||||
# model = BertForTokenClassification(config=config)
|
||||
# model.eval()
|
||||
# loss, logits = model(input_ids, token_type_ids, input_mask, token_labels)
|
||||
# result = {
|
||||
# "loss": loss,
|
||||
# "logits": logits,
|
||||
# }
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["logits"].size()),
|
||||
# [self.batch_size, self.seq_length, self.num_labels])
|
||||
# self.check_loss_output(result)
|
||||
|
||||
|
||||
def create_and_check_bert_for_multiple_choice(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
pass
|
||||
# config.num_choices = self.num_choices
|
||||
# model = BertForMultipleChoice(config=config)
|
||||
# model.eval()
|
||||
# multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
# multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
# multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
||||
# loss, logits = model(multiple_choice_inputs_ids,
|
||||
# multiple_choice_token_type_ids,
|
||||
# multiple_choice_input_mask,
|
||||
# choice_labels)
|
||||
# result = {
|
||||
# "loss": loss,
|
||||
# "logits": logits,
|
||||
# }
|
||||
# self.parent.assertListEqual(
|
||||
# list(result["logits"].size()),
|
||||
# [self.batch_size, self.num_choices])
|
||||
# self.check_loss_output(result)
|
||||
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(config, input_ids, token_type_ids, input_mask,
|
||||
sequence_labels, token_labels, choice_labels) = config_and_inputs
|
||||
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = TFBertModelTest.TFBertModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_bert_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_model(*config_and_inputs)
|
||||
|
||||
def test_for_masked_lm(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)
|
||||
|
||||
def test_for_multiple_choice(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)
|
||||
|
||||
def test_for_next_sequence_prediction(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)
|
||||
|
||||
def test_for_pretraining(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)
|
||||
|
||||
def test_for_question_answering(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)
|
||||
|
||||
def test_for_sequence_classification(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)
|
||||
|
||||
def test_for_token_classification(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_model_from_pretrained(self):
|
||||
cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
||||
model = TFBertModel.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue
Block a user