Update the example template for a no Trainer option (#10865)

This commit is contained in:
Sylvain Gugger 2021-03-23 10:02:39 -04:00 committed by GitHub
parent 2eb596f085
commit bf1f43fbd7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 409 additions and 3 deletions

View File

@ -4,5 +4,6 @@
"example_shortcut": "{{cookiecutter.directory_name}}", "example_shortcut": "{{cookiecutter.directory_name}}",
"model_class": "AutoModel", "model_class": "AutoModel",
"authors": "The HuggingFace Team", "authors": "The HuggingFace Team",
"can_train_from_scratch": ["True", "False"] "can_train_from_scratch": ["True", "False"],
"with_trainer": ["True", "False"]
} }

View File

@ -14,10 +14,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" """
Fine-tuning the library models for {{cookiecutter.example_name}}. Fine-tuning a 🤗 Transformers model on {{cookiecutter.example_name}}.
""" """
# You can also adapt this script on your own {{cookiecutter.example_name}} task. Pointers for this are left as comments. # You can also adapt this script on your own {{cookiecutter.example_name}} task. Pointers for this are left as comments.
{%- if cookiecutter.with_trainer == "True" %}
import logging import logging
import math import math
import os import os
@ -297,7 +299,7 @@ def main():
{%- elif cookiecutter.can_train_from_scratch == "False" %} {%- elif cookiecutter.can_train_from_scratch == "False" %}
config = AutoConfig.from_pretrained( config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels, # num_labels=num_labels, Uncomment if you have a certain number of labels
finetuning_task=data_args.task_name, finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir, cache_dir=model_args.cache_dir,
revision=model_args.model_revision, revision=model_args.model_revision,
@ -426,3 +428,406 @@ def _mp_fn(index):
if __name__ == "__main__": if __name__ == "__main__":
main() main()
{%- elif cookiecutter.with_trainer == "False" %}
import argparse
import logging
import math
import os
import random
import datasets
from datasets import load_dataset, load_metric
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AdamW,
AutoConfig,
{{cookiecutter.model_class}},
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
logger = logging.getLogger(__name__)
{%- if cookiecutter.can_train_from_scratch == "True" %}
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
{% endif %}
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help= "The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
{%- if cookiecutter.can_train_from_scratch == "True" %}
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES,
)
{% endif %}
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
{%- if cookiecutter.can_train_from_scratch == "True" %}
if model_args.config_name:
config = AutoConfig.from_pretrained(args.model_name_or_path)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
model = {{cookiecutter.model_class}}.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = {{cookiecutter.model_class}}.from_config(config)
model.resize_token_embeddings(len(tokenizer))
{%- elif cookiecutter.can_train_from_scratch == "False" %}
config = AutoConfig.from_pretrained(
args.config_name if model_args.config_name else args.model_name_or_path,
# num_labels=num_labels, Uncomment if you have a certain number of labels
finetuning_task=data_args.task_name,
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if model_args.tokenizer_name else args.model_name_or_path,
use_fast=not args.use_slow_tokenizer,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
)
{% endif %}
# Preprocessing the datasets.
# First we tokenize all the texts.
column_names = datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
padding = "max_length" if args.pad_to_max_length else False
def tokenize_function(examples):
result = tokenizer(examples[text_column_name], padding=padding, max_length=args.max_length, truncation=True)
if "label" in examples:
result["labels"] = examples["label"]
return result
processed_datasets = raw_datasets.map(
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
)
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# TODO Get the proper metric function
# metric = load_metric(xxx)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
model.eval()
for step, batch in enumerate(eval_dataloader):
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
logger.info(f"epoch {epoch}: {eval_metric}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if __name__ == "__main__":
main()
{% endif %}